These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 21470274)

  • 1. The effect of the visual characteristics of obstacles on risk of tripping and gait parameters during locomotion.
    Rietdyk S; Rhea CK
    Ophthalmic Physiol Opt; 2011 May; 31(3):302-10. PubMed ID: 21470274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual exteroceptive information provided during obstacle crossing did not modify the lower limb trajectory.
    Rhea CK; Rietdyk S
    Neurosci Lett; 2007 May; 418(1):60-5. PubMed ID: 17382468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Obstacle avoidance during locomotion using haptic information in normally sighted humans.
    Patla AE; Davies TC; Niechwiej E
    Exp Brain Res; 2004 Mar; 155(2):173-85. PubMed ID: 14770274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of load carriage on gait due to firefighting air bottle configuration.
    Park K; Hur P; Rosengren KS; Horn GP; Hsiao-Wecksler ET
    Ergonomics; 2010 Jul; 53(7):882-91. PubMed ID: 20582769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patients with central visual field loss adopt a cautious gait strategy during tasks that present a high risk of falling.
    Timmis MA; Pardhan S
    Invest Ophthalmol Vis Sci; 2012 Jun; 53(7):4120-9. PubMed ID: 22618593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes to control of adaptive gait in individuals with long-standing reduced stereoacuity.
    Buckley JG; Panesar GK; MacLellan MJ; Pacey IE; Barrett BT
    Invest Ophthalmol Vis Sci; 2010 May; 51(5):2487-95. PubMed ID: 20335609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lesions of area 5 of the posterior parietal cortex in the cat produce errors in the accuracy of paw placement during visually guided locomotion.
    Lajoie K; Drew T
    J Neurophysiol; 2007 Mar; 97(3):2339-54. PubMed ID: 17215501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Children use different anticipatory control strategies than adults to circumvent an obstacle in the travel path.
    Vallis LA; McFadyen BJ
    Exp Brain Res; 2005 Nov; 167(1):119-27. PubMed ID: 16177831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Middle-old and old-old retirement dwelling adults respond differently to locomotor challenges in cluttered environments.
    Reed RJ; Lowrey CR; Vallis LA
    Gait Posture; 2006 Jun; 23(4):486-91. PubMed ID: 16098746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of single and double obstacle avoidance strategies: a comparison between adults and children.
    Berard JR; Vallis LA
    Exp Brain Res; 2006 Oct; 175(1):21-31. PubMed ID: 16761138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advancing age progressively affects obstacle avoidance skills in the elderly.
    Weerdesteyn V; Nienhuis B; Duysens J
    Hum Mov Sci; 2005; 24(5-6):865-80. PubMed ID: 16337021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gait modification during approach phase when stepping over an obstacle in rats.
    Sato Y; Aoki S; Yanagihara D
    Neurosci Res; 2012 Mar; 72(3):263-9. PubMed ID: 22178543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Locomotor adaptation versus perceptual adaptation when stepping over an obstacle with a height illusion.
    Rhea CK; Rietdyk S; Haddad JM
    PLoS One; 2010 Jul; 5(7):e11544. PubMed ID: 20634962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-related differences in locomotor targeting performance under structural interference.
    Berg WP; Murdock LA
    Age Ageing; 2011 May; 40(3):324-9. PubMed ID: 21444327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of adaptive locomotion: effect of visual obstruction and visual cues in the environment.
    Rietdyk S; Rhea CK
    Exp Brain Res; 2006 Feb; 169(2):272-8. PubMed ID: 16421728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Action strategies of individuals during aperture crossing in nonconfined space.
    Hackney AL; Vallis LA; Cinelli ME
    Q J Exp Psychol (Hove); 2013 Jun; 66(6):1104-12. PubMed ID: 23718874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of object height and visual information on the control of obstacle crossing during locomotion in healthy older adults.
    Kunimune S; Okada S
    Gait Posture; 2017 Jun; 55():126-130. PubMed ID: 28437760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual feedforward control in human locomotion during avoidance of obstacles that change size.
    Santos LC; Moraes R; Patla AE
    Motor Control; 2010 Oct; 14(4):424-39. PubMed ID: 21051786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Footlift asymmetry during obstacle avoidance in high-risk elderly.
    Di Fabio RP; Kurszewski WM; Jorgenson EE; Kunz RC
    J Am Geriatr Soc; 2004 Dec; 52(12):2088-93. PubMed ID: 15571548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maintaining posture and avoiding tripping. Optical information for detecting and controlling orientation and locomotion.
    Owen DH
    Clin Geriatr Med; 1985 Aug; 1(3):581-99. PubMed ID: 3913510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.