BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

733 related articles for article (PubMed ID: 21470316)

  • 1. Nucleus- and nucleomorph-targeted histone proteins in a chlorarachniophyte alga.
    Hirakawa Y; Burki F; Keeling PJ
    Mol Microbiol; 2011 Jun; 80(6):1439-49. PubMed ID: 21470316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The chlorarachniophyte nucleomorph is supplemented with host cell nucleus-encoded histones.
    Löffelhardt W
    Mol Microbiol; 2011 Jun; 80(6):1413-6. PubMed ID: 21518391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleus-encoded periplastid-targeted EFL in chlorarachniophytes.
    Gile GH; Keeling PJ
    Mol Biol Evol; 2008 Sep; 25(9):1967-77. PubMed ID: 18599495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of periplastidal compartment-targeting signals in chlorarachniophytes.
    Hirakawa Y; Gile GH; Ota S; Keeling PJ; Ishida K
    Mol Biol Evol; 2010 Jul; 27(7):1538-45. PubMed ID: 20133351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomics reveals plastid- and periplastid-targeted proteins in the chlorarachniophyte alga Bigelowiella natans.
    Hopkins JF; Spencer DF; Laboissiere S; Neilson JA; Eveleigh RJ; Durnford DG; Gray MW; Archibald JM
    Genome Biol Evol; 2012; 4(12):1391-406. PubMed ID: 23221610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-based reconstruction of the protein import machinery in the secondary plastid of a chlorarachniophyte alga.
    Hirakawa Y; Burki F; Keeling PJ
    Eukaryot Cell; 2012 Mar; 11(3):324-33. PubMed ID: 22267775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complete nucleotide sequence of the chlorarachniophyte nucleomorph: nature's smallest nucleus.
    Gilson PR; Su V; Slamovits CH; Reith ME; Keeling PJ; McFadden GI
    Proc Natl Acad Sci U S A; 2006 Jun; 103(25):9566-71. PubMed ID: 16760254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleomorph Genome Sequences of Two Chlorarachniophytes, Amorphochlora amoebiformis and Lotharella vacuolata.
    Suzuki S; Shirato S; Hirakawa Y; Ishida K
    Genome Biol Evol; 2015 May; 7(6):1533-45. PubMed ID: 26002880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleomorph and plastid genome sequences of the chlorarachniophyte Lotharella oceanica: convergent reductive evolution and frequent recombination in nucleomorph-bearing algae.
    Tanifuji G; Onodera NT; Brown MW; Curtis BA; Roger AJ; Ka-Shu Wong G; Melkonian M; Archibald JM
    BMC Genomics; 2014 May; 15(1):374. PubMed ID: 24885563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleomorph ribosomal DNA and telomere dynamics in chlorarachniophyte algae.
    Silver TD; Moore CE; Archibald JM
    J Eukaryot Microbiol; 2010; 57(6):453-9. PubMed ID: 21040099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of molecular chaperone genes in nucleomorph genomes.
    Hirakawa Y; Suzuki S; Archibald JM; Keeling PJ; Ishida K
    Mol Biol Evol; 2014 Jun; 31(6):1437-43. PubMed ID: 24603278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complete nucleomorph genome sequence of the nonphotosynthetic alga Cryptomonas paramecium reveals a core nucleomorph gene set.
    Tanifuji G; Onodera NT; Wheeler TJ; Dlutek M; Donaher N; Archibald JM
    Genome Biol Evol; 2011; 3():44-54. PubMed ID: 21147880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual targeting of aminoacyl-tRNA synthetases to the mitochondrion and complex plastid in chlorarachniophytes.
    Hirakawa Y; Burki F; Keeling PJ
    J Cell Sci; 2012 Dec; 125(Pt 24):6176-84. PubMed ID: 23038770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogeny and nucleomorph karyotype diversity of chlorarachniophyte algae.
    Silver TD; Koike S; Yabuki A; Kofuji R; Archibald JM; Ishida K
    J Eukaryot Microbiol; 2007; 54(5):403-10. PubMed ID: 17910684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleus-to-nucleus gene transfer and protein retargeting into a remnant cytoplasm of cryptophytes and diatoms.
    Gould SB; Sommer MS; Kroth PG; Gile GH; Keeling PJ; Maier UG
    Mol Biol Evol; 2006 Dec; 23(12):2413-22. PubMed ID: 16971693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dinoflagellates with relic endosymbiont nuclei as models for elucidating organellogenesis.
    Sarai C; Tanifuji G; Nakayama T; Kamikawa R; Takahashi K; Yazaki E; Matsuo E; Miyashita H; Ishida KI; Iwataki M; Inagaki Y
    Proc Natl Acad Sci U S A; 2020 Mar; 117(10):5364-5375. PubMed ID: 32094181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diurnal Transcriptional Regulation of Endosymbiotically Derived Genes in the Chlorarachniophyte Bigelowiella natans.
    Suzuki S; Ishida K; Hirakawa Y
    Genome Biol Evol; 2016 Sep; 8(9):2672-82. PubMed ID: 27503292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plastid genome sequences of Gymnochlora stellata, Lotharella vacuolata, and Partenskyella glossopodia reveal remarkable structural conservation among chlorarachniophyte species.
    Suzuki S; Hirakawa Y; Kofuji R; Sugita M; Ishida KI
    J Plant Res; 2016 Jul; 129(4):581-590. PubMed ID: 26920842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular chaperones encoded by a reduced nucleus: the cryptomonad nucleomorph.
    Archibald JM; Cavalier-Smith T; Maier U; Douglas S
    J Mol Evol; 2001 Jun; 52(6):490-501. PubMed ID: 11443352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of chloroplast and nucleomorph replication by the cell cycle in the cryptophyte Guillardia theta.
    Onuma R; Mishra N; Miyagishima SY
    Sci Rep; 2017 May; 7(1):2345. PubMed ID: 28539635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.