BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 21470417)

  • 1. Expression level, cellular compartment and metabolic network position all influence the average selective constraint on mammalian enzymes.
    Hudson CM; Conant GC
    BMC Evol Biol; 2011 Apr; 11():89. PubMed ID: 21470417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene connectivity and enzyme evolution in the human metabolic network.
    Dobon B; Montanucci L; Peretó J; Bertranpetit J; Laayouni H
    Biol Direct; 2019 Sep; 14(1):17. PubMed ID: 31481097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of pathway topology and functional class on the molecular evolution of human metabolic genes.
    Montanucci L; Laayouni H; Dobon B; Keys KL; Bertranpetit J; Peretó J
    PLoS One; 2018; 13(12):e0208782. PubMed ID: 30550546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic flux is a determinant of the evolutionary rates of enzyme-encoding genes.
    Colombo M; Laayouni H; Invergo BM; Bertranpetit J; Montanucci L
    Evolution; 2014 Feb; 68(2):605-13. PubMed ID: 24102646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The efficiency of purifying selection in Mammals vs. Drosophila for metabolic genes.
    Petit N; Barbadilla A
    J Evol Biol; 2009 Oct; 22(10):2118-24. PubMed ID: 19694896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Average allozyme heterozygosity in vertebrates correlates with Ka/Ks measured in the human-mouse lineage.
    Skibinski DO; Ward RD
    Mol Biol Evol; 2004 Sep; 21(9):1753-9. PubMed ID: 15201399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inference of mutation parameters and selective constraint in mammalian coding sequences by approximate Bayesian computation.
    Keightley PD; Eöry L; Halligan DL; Kirkpatrick M
    Genetics; 2011 Apr; 187(4):1153-61. PubMed ID: 21288873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of probabilistic regulatory networks into constraint-based models of metabolism with applications to Alzheimer's disease.
    Yu H; Blair RH
    BMC Bioinformatics; 2019 Jul; 20(1):386. PubMed ID: 31291905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlated Selection on Amino Acid Deletion and Replacement in Mammalian Protein Sequences.
    Zheng Y; Graur D; Azevedo RBR
    J Mol Evol; 2018 Jul; 86(6):365-378. PubMed ID: 29955898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purifying selection in mammalian mitochondrial protein-coding genes is highly effective and congruent with evolution of nuclear genes.
    Popadin KY; Nikolaev SI; Junier T; Baranova M; Antonarakis SE
    Mol Biol Evol; 2013 Feb; 30(2):347-55. PubMed ID: 22983951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonsynonymous substitution rate (Ka) is a relatively consistent parameter for defining fast-evolving and slow-evolving protein-coding genes.
    Wang D; Liu F; Wang L; Huang S; Yu J
    Biol Direct; 2011 Feb; 6():13. PubMed ID: 21342519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A conserved mammalian protein interaction network.
    Pérez-Bercoff Å; Hudson CM; Conant GC
    PLoS One; 2013; 8(1):e52581. PubMed ID: 23320073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterns of variation during adaptation in functionally linked loci.
    Sellis D; Longo MD
    Evolution; 2015 Jan; 69(1):75-89. PubMed ID: 25338665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary constraint and adaptation in the metabolic network of Drosophila.
    Greenberg AJ; Stockwell SR; Clark AG
    Mol Biol Evol; 2008 Dec; 25(12):2537-46. PubMed ID: 18799713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How biochemical constraints of cellular growth shape evolutionary adaptations in metabolism.
    Berkhout J; Bosdriesz E; Nikerel E; Molenaar D; de Ridder D; Teusink B; Bruggeman FJ
    Genetics; 2013 Jun; 194(2):505-12. PubMed ID: 23535382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Similarity of synonymous substitution rates across mammalian genomes.
    Chuang JH; Li H
    J Mol Evol; 2007 Sep; 65(3):236-48. PubMed ID: 17674075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relationship between the hierarchical position of proteins in the human signal transduction network and their rate of evolution.
    Alvarez-Ponce D
    BMC Evol Biol; 2012 Sep; 12():192. PubMed ID: 23020283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selection Shapes Synonymous Stop Codon Use in Mammals.
    Seoighe C; Kiniry SJ; Peters A; Baranov PV; Yang H
    J Mol Evol; 2020 Sep; 88(7):549-561. PubMed ID: 32617614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of synonymous codon usage patterns of HPRT1 gene across twelve mammalian species.
    De Mandal S; Mazumder TH; Panda AK; Kumar NS; Jin F
    Genomics; 2020 Jan; 112(1):304-311. PubMed ID: 30818063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synonymous and nonsynonymous substitutions in mammalian genes: intragenic correlations.
    Alvarez-Valin F; Jabbari K; Bernardi G
    J Mol Evol; 1998 Jan; 46(1):37-44. PubMed ID: 9419223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.