BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 21470833)

  • 1. Threonine side chain conformational population distribution of a type I antifreeze protein on interacting with ice surface studied via ¹³C-¹⁵N dynamic REDOR NMR.
    Mao Y; Jeong M; Wang T; Ba Y
    Solid State Nucl Magn Reson; 2011; 39(1-2):7-13. PubMed ID: 21470833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insight into the binding of antifreeze proteins to ice surfaces via 13C spin lattice relaxation solid-state NMR.
    Mao Y; Ba Y
    Biophys J; 2006 Aug; 91(3):1059-68. PubMed ID: 16648161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible binding of the HPLC6 isoform of type I antifreeze proteins to ice surfaces and the antifreeze mechanism studied by multiple quantum filtering-spin exchange NMR experiment.
    Ba Y; Wongskhaluang J; Li J
    J Am Chem Soc; 2003 Jan; 125(2):330-1. PubMed ID: 12517134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of a type I antifreeze protein (AFP) on the melting of frozen AFP and AFP+solute aqueous solutions studied by NMR microimaging experiment.
    Ba Y; Mao Y; Galdino L; Günsen Z
    J Biol Phys; 2013 Jan; 39(1):131-44. PubMed ID: 23860838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Why ice-binding type I antifreeze protein acts as a gas hydrate crystal inhibitor.
    Bagherzadeh SA; Alavi S; Ripmeester JA; Englezos P
    Phys Chem Chem Phys; 2015 Apr; 17(15):9984-90. PubMed ID: 25786071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational and hydration properties modulate ice recognition by type I antifreeze protein and its mutants.
    Chakraborty S; Jana B
    Phys Chem Chem Phys; 2017 May; 19(18):11678-11689. PubMed ID: 28435965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution structure of a recombinant type I sculpin antifreeze protein.
    Kwan AH; Fairley K; Anderberg PI; Liew CW; Harding MM; Mackay JP
    Biochemistry; 2005 Feb; 44(6):1980-8. PubMed ID: 15697223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of antifreeze proteins investigated via the site-directed spin labeling technique.
    Flores A; Quon JC; Perez AF; Ba Y
    Eur Biophys J; 2018 Sep; 47(6):611-630. PubMed ID: 29487966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structures and ice-binding faces of the alanine-rich type I antifreeze proteins.
    Patel SN; Graether SP
    Biochem Cell Biol; 2010 Apr; 88(2):223-9. PubMed ID: 20453925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-function relationships in a type I antifreeze polypeptide. The role of threonine methyl and hydroxyl groups in antifreeze activity.
    Zhang W; Laursen RA
    J Biol Chem; 1998 Dec; 273(52):34806-12. PubMed ID: 9857006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of type I antifreeze protein and mutants in supercooled water.
    Graether SP; Slupsky CM; Davies PL; Sykes BD
    Biophys J; 2001 Sep; 81(3):1677-83. PubMed ID: 11509380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR structural studies on antifreeze proteins.
    Sönnichsen FD; Davies PL; Sykes BD
    Biochem Cell Biol; 1998; 76(2-3):284-93. PubMed ID: 9923697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical study of interaction of winter flounder antifreeze protein with ice.
    Jorov A; Zhorov BS; Yang DS
    Protein Sci; 2004 Jun; 13(6):1524-37. PubMed ID: 15152087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy-optimized structure of antifreeze protein and its binding mechanism.
    Chou KC
    J Mol Biol; 1992 Jan; 223(2):509-17. PubMed ID: 1738160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ice-binding mechanism of winter flounder antifreeze proteins.
    Cheng A; Merz KM
    Biophys J; 1997 Dec; 73(6):2851-73. PubMed ID: 9414201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution structures, dynamics, and ice growth inhibitory activity of peptide fragments derived from an antarctic yeast protein.
    Shah SH; Kar RK; Asmawi AA; Rahman MB; Murad AM; Mahadi NM; Basri M; Rahman RN; Salleh AB; Chatterjee S; Tejo BA; Bhunia A
    PLoS One; 2012; 7(11):e49788. PubMed ID: 23209600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of hydrophobic residues to ice binding by fish type III antifreeze protein.
    Baardsnes J; Davies PL
    Biochim Biophys Acta; 2002 Nov; 1601(1):49-54. PubMed ID: 12429502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of side chain conformational flexibility in surface recognition by Tenebrio molitor antifreeze protein.
    Daley ME; Sykes BD
    Protein Sci; 2003 Jul; 12(7):1323-31. PubMed ID: 12824479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of steric mutations on the structure of type III antifreeze protein and its interaction with ice.
    DeLuca CI; Davies PL; Ye Q; Jia Z
    J Mol Biol; 1998 Jan; 275(3):515-25. PubMed ID: 9466928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide backbone circularization enhances antifreeze protein thermostability.
    Stevens CA; Semrau J; Chiriac D; Litschko M; Campbell RL; Langelaan DN; Smith SP; Davies PL; Allingham JS
    Protein Sci; 2017 Oct; 26(10):1932-1941. PubMed ID: 28691252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.