These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 21470979)
1. Responses of sugar maple and hemlock seedlings to elevated carbon dioxide under altered above- and belowground nitrogen sources. Eller AS; McGuire KL; Sparks JP Tree Physiol; 2011 Apr; 31(4):391-401. PubMed ID: 21470979 [TBL] [Abstract][Full Text] [Related]
2. Sex-related and stage-dependent source-to-sink transition in Populus cathayana grown at elevated CO(2) and elevated temperature. Zhao H; Li Y; Zhang X; Korpelainen H; Li C Tree Physiol; 2012 Nov; 32(11):1325-38. PubMed ID: 22918961 [TBL] [Abstract][Full Text] [Related]
3. Higher growth temperatures decreased net carbon assimilation and biomass accumulation of northern red oak seedlings near the southern limit of the species range. Wertin TM; McGuire MA; Teskey RO Tree Physiol; 2011 Dec; 31(12):1277-88. PubMed ID: 21937670 [TBL] [Abstract][Full Text] [Related]
4. Norway maple displays greater seasonal growth and phenotypic plasticity to light than native sugar maple. Paquette A; Fontaine B; Berninger F; Dubois K; Lechowicz MJ; Messier C; Posada JM; Valladares F; Brisson J Tree Physiol; 2012 Nov; 32(11):1339-47. PubMed ID: 23076822 [TBL] [Abstract][Full Text] [Related]
5. Responses of a dominant temperate grassland plant (Leymus chinensis) to elevated carbon dioxide and nitrogen addition in China. Zhang L; Yang Y; Zhan X; Zhang C; Zhou S; Wu D J Environ Qual; 2010; 39(1):251-9. PubMed ID: 20048313 [TBL] [Abstract][Full Text] [Related]
6. Effects of predicted future and current atmospheric temperature and [CO2] and high and low soil moisture on gas exchange and growth of Pinus taeda seedlings at cool and warm sites in the species range. Wertin TM; McGuire MA; Teskey RO Tree Physiol; 2012 Jul; 32(7):847-58. PubMed ID: 22696270 [TBL] [Abstract][Full Text] [Related]
7. Competition for nitrogen between European beech and sycamore maple shifts in favour of beech with decreasing light availability. Simon J; Li X; Rennenberg H Tree Physiol; 2014 Jan; 34(1):49-60. PubMed ID: 24391164 [TBL] [Abstract][Full Text] [Related]
8. Responses of deciduous broadleaf trees to defoliation in a CO2 enriched atmosphere. Volin JC; Kruger EL; Lindroth RL Tree Physiol; 2002 May; 22(7):435-48. PubMed ID: 11986047 [TBL] [Abstract][Full Text] [Related]
9. Growth and photosynthetic traits of hybrid larch F1 (Larix gmelinii var. japonica x L. kaempferi) under elevated CO2 concentration with low nutrient availability. Watanabe M; Watanabe Y; Kitaoka S; Utsugi H; Kita K; Koike T Tree Physiol; 2011 Sep; 31(9):965-75. PubMed ID: 21813517 [TBL] [Abstract][Full Text] [Related]
10. Potential impact of CO2 leakage from carbon capture and storage systems on field bean (Vicia faba). Al-Traboulsi M; Sjögersten S; Colls J; Steven M; Black C Physiol Plant; 2012 Nov; 146(3):261-71. PubMed ID: 22443472 [TBL] [Abstract][Full Text] [Related]
11. Effects of elevated atmospheric CO2 on invasive plants: comparison of purple and yellow nutsedge (Cyperus rotundus L. and C. esculentus L.). Rogers HH; Runion GB; Prior SA; Price AJ; Torbert HA; Gjerstad DH J Environ Qual; 2008; 37(2):395-400. PubMed ID: 18268302 [TBL] [Abstract][Full Text] [Related]
12. Urban environment of New York City promotes growth in northern red oak seedlings. Searle SY; Turnbull MH; Boelman NT; Schuster WS; Yakir D; Griffin KL Tree Physiol; 2012 Apr; 32(4):389-400. PubMed ID: 22491523 [TBL] [Abstract][Full Text] [Related]
13. Fine root chemistry and decomposition in model communities of north-temperate tree species show little response to elevated atmospheric CO2 and varying soil resource availability. King JS; Pregitzer KS; Zak DR; Holmes WE; Schmidt K Oecologia; 2005 Dec; 146(2):318-28. PubMed ID: 16041614 [TBL] [Abstract][Full Text] [Related]
14. No evidence that chronic nitrogen additions increase photosynthesis in mature sugar maple forests. Talhelm AF; Pregitzer KS; Burton AJ Ecol Appl; 2011 Oct; 21(7):2413-24. PubMed ID: 22073632 [TBL] [Abstract][Full Text] [Related]
15. Photosynthetic responses of two eucalypts to industrial-age changes in atmospheric [CO2] and temperature. Ghannoum O; Phillips NG; Sears MA; Logan BA; Lewis JD; Conroy JP; Tissue DT Plant Cell Environ; 2010 Oct; 33(10):1671-81. PubMed ID: 20492554 [TBL] [Abstract][Full Text] [Related]
16. Gas exchange, growth, and defense responses of invasive Alliaria petiolata (Brassicaceae) and native Geum vernum (Rosaceae) to elevated atmospheric CO2 and warm spring temperatures. Anderson LJ; Cipollini D Am J Bot; 2013 Aug; 100(8):1544-54. PubMed ID: 23857735 [TBL] [Abstract][Full Text] [Related]
17. Effects of CO Reid CD; Strain BR Oecologia; 1994 Jun; 98(1):31-39. PubMed ID: 28312793 [TBL] [Abstract][Full Text] [Related]
18. Changes in susceptibility of beech (Fagus sylvatica) seedlings towards Phytophthora citricola under the influence of elevated atmospheric CO2 and nitrogen fertilization. Fleischmann F; Raidl S; Osswald WF Environ Pollut; 2010 Apr; 158(4):1051-60. PubMed ID: 19880228 [TBL] [Abstract][Full Text] [Related]
19. Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response. Phillips RP; Bernhardt ES; Schlesinger WH Tree Physiol; 2009 Dec; 29(12):1513-23. PubMed ID: 19819875 [TBL] [Abstract][Full Text] [Related]
20. The effects of elevated CO2 on clonal growth and nutrient content of submerge plant Vallisneria spinulosa. Yan X; Yu D; Li YK Chemosphere; 2006 Jan; 62(4):595-601. PubMed ID: 16083940 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]