BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 21471002)

  • 1. Transport activity-dependent intracellular sorting of the yeast general amino acid permease.
    Cain NE; Kaiser CA
    Mol Biol Cell; 2011 Jun; 22(11):1919-29. PubMed ID: 21471002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amino acids regulate retrieval of the yeast general amino acid permease from the vacuolar targeting pathway.
    Rubio-Texeira M; Kaiser CA
    Mol Biol Cell; 2006 Jul; 17(7):3031-50. PubMed ID: 16641373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activity-dependent reversible inactivation of the general amino acid permease.
    Risinger AL; Cain NE; Chen EJ; Kaiser CA
    Mol Biol Cell; 2006 Oct; 17(10):4411-9. PubMed ID: 16885415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A conserved GTPase-containing complex is required for intracellular sorting of the general amino-acid permease in yeast.
    Gao M; Kaiser CA
    Nat Cell Biol; 2006 Jul; 8(7):657-67. PubMed ID: 16732272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino acids regulate the intracellular trafficking of the general amino acid permease of Saccharomycescerevisiae.
    Chen EJ; Kaiser CA
    Proc Natl Acad Sci U S A; 2002 Nov; 99(23):14837-42. PubMed ID: 12417748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different ubiquitin signals act at the Golgi and plasma membrane to direct GAP1 trafficking.
    Risinger AL; Kaiser CA
    Mol Biol Cell; 2008 Jul; 19(7):2962-72. PubMed ID: 18434603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino acid transport through the Saccharomyces cerevisiae Gap1 permease is controlled by the Ras/cAMP pathway.
    Garrett JM
    Int J Biochem Cell Biol; 2008; 40(3):496-502. PubMed ID: 17919965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Components of a ubiquitin ligase complex specify polyubiquitination and intracellular trafficking of the general amino acid permease.
    Helliwell SB; Losko S; Kaiser CA
    J Cell Biol; 2001 May; 153(4):649-62. PubMed ID: 11352928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of amino acid permease sorting in the late secretory pathway of Saccharomyces cerevisiae by SEC13, LST4, LST7 and LST8.
    Roberg KJ; Bickel S; Rowley N; Kaiser CA
    Genetics; 1997 Dec; 147(4):1569-84. PubMed ID: 9409822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The presence of an ER exit signal determines the protein sorting upon ER exit in yeast.
    Watanabe R; Castillon GA; Meury A; Riezman H
    Biochem J; 2008 Sep; 414(2):237-45. PubMed ID: 18462190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological regulation of membrane protein sorting late in the secretory pathway of Saccharomyces cerevisiae.
    Roberg KJ; Rowley N; Kaiser CA
    J Cell Biol; 1997 Jun; 137(7):1469-82. PubMed ID: 9199164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quality control of plasma membrane proteins by Saccharomyces cerevisiae Nedd4-like ubiquitin ligase Rsp5p under environmental stress conditions.
    Shiga T; Yoshida N; Shimizu Y; Suzuki E; Sasaki T; Watanabe D; Takagi H
    Eukaryot Cell; 2014 Sep; 13(9):1191-9. PubMed ID: 25001409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method for determining the in vivo topology of yeast polytopic membrane proteins demonstrates that Gap1p fully integrates into the membrane independently of Shr3p.
    Gilstring CF; Ljungdahl PO
    J Biol Chem; 2000 Oct; 275(40):31488-95. PubMed ID: 10903320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake of putrescine and spermidine by Gap1p on the plasma membrane in Saccharomyces cerevisiae.
    Uemura T; Kashiwagi K; Igarashi K
    Biochem Biophys Res Commun; 2005 Mar; 328(4):1028-33. PubMed ID: 15707981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LST8 negatively regulates amino acid biosynthesis as a component of the TOR pathway.
    Chen EJ; Kaiser CA
    J Cell Biol; 2003 Apr; 161(2):333-47. PubMed ID: 12719473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A C-terminal di-leucine motif and nearby sequences are required for NH4(+)-induced inactivation and degradation of the general amino acid permease, Gap1p, of Saccharomyces cerevisiae.
    Hein C; André B
    Mol Microbiol; 1997 May; 24(3):607-16. PubMed ID: 9179853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The N-terminal domain of the yeast permease Bap2p plays a role in its degradation.
    Omura F; Kodama Y; Ashikari T
    Biochem Biophys Res Commun; 2001 Oct; 287(5):1045-50. PubMed ID: 11587526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate-induced ubiquitylation and endocytosis of yeast amino acid permeases.
    Ghaddar K; Merhi A; Saliba E; Krammer EM; Prévost M; André B
    Mol Cell Biol; 2014 Dec; 34(24):4447-63. PubMed ID: 25266656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a novel tyrosine permease of lager brewing yeast shared by Saccharomyces cerevisiae strain RM11-1a.
    Omura F; Hatanaka H; Nakao Y
    FEMS Yeast Res; 2007 Dec; 7(8):1350-61. PubMed ID: 17825063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The General Amino Acid Permease FfGap1 of Fusarium fujikuroi Is Sorted to the Vacuole in a Nitrogen-Dependent, but Npr1 Kinase-Independent Manner.
    Pfannmüller A; Wagner D; Sieber C; Schönig B; Boeckstaens M; Marini AM; Tudzynski B
    PLoS One; 2015; 10(4):e0125487. PubMed ID: 25909858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.