BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 21471132)

  • 1. Temperature effects on structure and dynamics of the psychrophilic protease subtilisin S41 and its thermostable mutants in solution.
    Martinez R; Schwaneberg U; Roccatano D
    Protein Eng Des Sel; 2011 Jul; 24(7):533-44. PubMed ID: 21471132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directed evolution study of temperature adaptation in a psychrophilic enzyme.
    Miyazaki K; Wintrode PL; Grayling RA; Rubingh DN; Arnold FH
    J Mol Biol; 2000 Apr; 297(4):1015-26. PubMed ID: 10736234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cold adaptation of a mesophilic subtilisin-like protease by laboratory evolution.
    Wintrode PL; Miyazaki K; Arnold FH
    J Biol Chem; 2000 Oct; 275(41):31635-40. PubMed ID: 10906329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal stability and unfolding pathways of Sso7d and its mutant F31A: insight from molecular dynamics simulation.
    Xu X; Su J; Chen W; Wang C
    J Biomol Struct Dyn; 2011 Apr; 28(5):717-27. PubMed ID: 21294584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of low-temperature caseinolytic activity of a thermophilic subtilase by directed evolution and site-directed mutagenesis.
    Zhong CQ; Song S; Fang N; Liang X; Zhu H; Tang XF; Tang B
    Biotechnol Bioeng; 2009 Dec; 104(5):862-70. PubMed ID: 19609954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic properties of extremophilic subtilisin-like serine-proteases.
    Tiberti M; Papaleo E
    J Struct Biol; 2011 Apr; 174(1):69-83. PubMed ID: 21276854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular and structural characterization of a surfactant-stable high-alkaline protease AprB with a novel structural feature unique to subtilisin family.
    Deng A; Wu J; Zhang G; Wen T
    Biochimie; 2011 Apr; 93(4):783-91. PubMed ID: 21281692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing subtilisin thermostability through a modified normalized B-factor analysis and loop-grafting strategy.
    Tang H; Shi K; Shi C; Aihara H; Zhang J; Du G
    J Biol Chem; 2019 Nov; 294(48):18398-18407. PubMed ID: 31615894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural insights into cold inactivation of tryptophanase and cold adaptation of subtilisin S41.
    Almog O; Kogan A; Leeuw Md; Gdalevsky GY; Cohen-Luria R; Parola AH
    Biopolymers; 2008 May; 89(5):354-9. PubMed ID: 17937401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The crystal structures of the psychrophilic subtilisin S41 and the mesophilic subtilisin Sph reveal the same calcium-loaded state.
    Almog O; González A; Godin N; de Leeuw M; Mekel MJ; Klein D; Braun S; Shoham G; Walter RL
    Proteins; 2009 Feb; 74(2):489-96. PubMed ID: 18655058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutational analysis of the autoprocessing site of subtilisin YaB-G124A.
    Chang YS; Liaw SH; Mei HC; Hsu CC; Wu CY; Tsai YC
    Biochem Biophys Res Commun; 2002 Feb; 291(1):165-9. PubMed ID: 11829478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring nonnatural evolutionary pathways by saturation mutagenesis: rapid improvement of protein function.
    Miyazaki K; Arnold FH
    J Mol Evol; 1999 Dec; 49(6):716-20. PubMed ID: 10594172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cold adaptation of proteins. Purification, characterization, and sequence of the heat-labile subtilisin from the antarctic psychrophile Bacillus TA41.
    Davail S; Feller G; Narinx E; Gerday C
    J Biol Chem; 1994 Jul; 269(26):17448-53. PubMed ID: 8021248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of point mutation on enzymatic activity: correlation between protein electronic structure and motion in chorismate mutase reaction.
    Ishida T
    J Am Chem Soc; 2010 May; 132(20):7104-18. PubMed ID: 20426479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the amino acid sequence in domain swapping of the B1 domain of protein G.
    Sirota FL; Héry-Huynh S; Maurer-Stroh S; Wodak SJ
    Proteins; 2008 Jul; 72(1):88-104. PubMed ID: 18186476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering thermostability in subtilisin BPN' by in vitro mutagenesis.
    Rollence ML; Filpula D; Pantoliano MW; Bryan PN
    Crit Rev Biotechnol; 1988; 8(3):217-24. PubMed ID: 3145814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directed coevolution of stability and catalytic activity in calcium-free subtilisin.
    Strausberg SL; Ruan B; Fisher KE; Alexander PA; Bryan PN
    Biochemistry; 2005 Mar; 44(9):3272-9. PubMed ID: 15736937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cancer-related mutations in BRCA1-BRCT cause long-range structural changes in protein-protein binding sites: a molecular dynamics study.
    Gough CA; Gojobori T; Imanishi T
    Proteins; 2007 Jan; 66(1):69-86. PubMed ID: 17063491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cold-adapted maturation of thermophilic WF146 protease by mimicking the propeptide binding interactions of psychrophilic subtilisin S41.
    Yang YR; Zhu H; Fang N; Liang X; Zhong CQ; Tang XF; Shen P; Tang B
    FEBS Lett; 2008 Jul; 582(17):2620-6. PubMed ID: 18586033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effects of mutations in Bacillus subtilis genome decreasing the protease activity on the formation of subtilisin molecular forms].
    Abramov ZT; Ermakova LM; Erokhina LI; Liublinskaia LA; Strongin AIa; Stepanov VM
    Biokhimiia; 1977 Aug; 42(8):1478-86. PubMed ID: 410457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.