These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 21471382)

  • 1. Functional elimination of excitatory feedforward inputs underlies developmental refinement of visual receptive fields in zebrafish.
    Zhang M; Liu Y; Wang SZ; Zhong W; Liu BH; Tao HW
    J Neurosci; 2011 Apr; 31(14):5460-9. PubMed ID: 21471382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity-dependent matching of excitatory and inhibitory inputs during refinement of visual receptive fields.
    Tao HW; Poo MM
    Neuron; 2005 Mar; 45(6):829-36. PubMed ID: 15797545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition to excitation ratio regulates visual system responses and behavior in vivo.
    Shen W; McKeown CR; Demas JA; Cline HT
    J Neurophysiol; 2011 Nov; 106(5):2285-302. PubMed ID: 21795628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Refinement of Spatial Receptive Fields in the Developing Mouse Lateral Geniculate Nucleus Is Coordinated with Excitatory and Inhibitory Remodeling.
    Tschetter WW; Govindaiah G; Etherington IM; Guido W; Niell CM
    J Neurosci; 2018 May; 38(19):4531-4542. PubMed ID: 29661964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of multisensory convergence in the Xenopus optic tectum.
    Deeg KE; Sears IB; Aizenman CD
    J Neurophysiol; 2009 Dec; 102(6):3392-404. PubMed ID: 19793878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dark rearing reveals the mechanism underlying stimulus size tuning of superior colliculus neurons.
    Razak KA; Pallas SL
    Vis Neurosci; 2006; 23(5):741-8. PubMed ID: 17020630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A competition-based mechanism mediates developmental refinement of tectal neuron receptive fields.
    Dong W; Aizenman CD
    J Neurosci; 2012 Nov; 32(47):16872-9. PubMed ID: 23175839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual receptive field structure of cortical inhibitory neurons revealed by two-photon imaging guided recording.
    Liu BH; Li P; Li YT; Sun YJ; Yanagawa Y; Obata K; Zhang LI; Tao HW
    J Neurosci; 2009 Aug; 29(34):10520-32. PubMed ID: 19710305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptic currents generating the inhibitory surround of ganglion cells in the mammalian retina.
    Flores-Herr N; Protti DA; Wässle H
    J Neurosci; 2001 Jul; 21(13):4852-63. PubMed ID: 11425912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suprathreshold excitation of frog tectal neurons by short spike trains of single retinal ganglion cell.
    Kuras A; Baginskas A; Batuleviciene V
    Exp Brain Res; 2004 Dec; 159(4):509-18. PubMed ID: 15221171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broadening of cortical inhibition mediates developmental sharpening of orientation selectivity.
    Li YT; Ma WP; Pan CJ; Zhang LI; Tao HW
    J Neurosci; 2012 Mar; 32(12):3981-91. PubMed ID: 22442065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Balanced Enhancements of Synaptic Excitation and Inhibition Underlie Developmental Maturation of Receptive Fields in the Mouse Visual Cortex.
    Fang Q; Li YT; Peng B; Li Z; Zhang LI; Tao HW
    J Neurosci; 2021 Dec; 41(49):10065-10079. PubMed ID: 34725186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direction tuning of individual retinal inputs to the turtle accessory optic system.
    Kogo N; Rubio DM; Ariel M
    J Neurosci; 1998 Apr; 18(7):2673-84. PubMed ID: 9502825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intervening inhibition underlies simple-cell receptive field structure in visual cortex.
    Liu BH; Li P; Sun YJ; Li YT; Zhang LI; Tao HW
    Nat Neurosci; 2010 Jan; 13(1):89-96. PubMed ID: 19946318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic Basis for Differential Orientation Selectivity between Complex and Simple Cells in Mouse Visual Cortex.
    Li YT; Liu BH; Chou XL; Zhang LI; Tao HW
    J Neurosci; 2015 Aug; 35(31):11081-93. PubMed ID: 26245969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slow IPSC kinetics, low levels of alpha1 subunit expression and paired-pulse depression are distinct properties of neonatal inhibitory GABAergic synaptic connections in the mouse superior colliculus.
    Jüttner R; Meier J; Grantyn R
    Eur J Neurosci; 2001 Jun; 13(11):2088-98. PubMed ID: 11422449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recruitment of local excitatory circuits in the superior colliculus following deafferentation and the regeneration of retinocollicular inputs.
    Turner JP; Sauvé Y; Varela-Rodriguez C; Lund RD; Salt TE
    Eur J Neurosci; 2005 Oct; 22(7):1643-54. PubMed ID: 16197505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity-dependent transcription of BDNF enhances visual acuity during development.
    Schwartz N; Schohl A; Ruthazer ES
    Neuron; 2011 May; 70(3):455-67. PubMed ID: 21555072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced excitatory and reduced inhibitory synaptic transmission contribute to persistent pain-induced neuronal hyper-responsiveness in anterior cingulate cortex.
    Gong KR; Cao FL; He Y; Gao CY; Wang DD; Li H; Zhang FK; An YY; Lin Q; Chen J
    Neuroscience; 2010 Dec; 171(4):1314-25. PubMed ID: 20951771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterisation of rat superficial superior colliculus neurones: firing properties and sensitivity to GABA.
    Edwards MD; White AM; Platt B
    Neuroscience; 2002; 110(1):93-104. PubMed ID: 11882375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.