These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 21471389)

  • 1. Neural correlates of forward planning in a spatial decision task in humans.
    Simon DA; Daw ND
    J Neurosci; 2011 Apr; 31(14):5526-39. PubMed ID: 21471389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple memory systems as substrates for multiple decision systems.
    Doll BB; Shohamy D; Daw ND
    Neurobiol Learn Mem; 2015 Jan; 117():4-13. PubMed ID: 24846190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signals in human striatum are appropriate for policy update rather than value prediction.
    Li J; Daw ND
    J Neurosci; 2011 Apr; 31(14):5504-11. PubMed ID: 21471387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain signals of a Surprise-Actor-Critic model: Evidence for multiple learning modules in human decision making.
    Liakoni V; Lehmann MP; Modirshanechi A; Brea J; Lutti A; Gerstner W; Preuschoff K
    Neuroimage; 2022 Feb; 246():118780. PubMed ID: 34875383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural and psychological maturation of decision-making in adolescence and young adulthood.
    Christakou A; Gershman SJ; Niv Y; Simmons A; Brammer M; Rubia K
    J Cogn Neurosci; 2013 Nov; 25(11):1807-23. PubMed ID: 23859647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural correlates of reinforcement learning and social preferences in competitive bidding.
    van den Bos W; Talwar A; McClure SM
    J Neurosci; 2013 Jan; 33(5):2137-46. PubMed ID: 23365249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behavioral and neural predictors of upcoming decisions.
    Cohen MX; Ranganath C
    Cogn Affect Behav Neurosci; 2005 Jun; 5(2):117-26. PubMed ID: 16180619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Congruence of Inherent and Acquired Values Facilitates Reward-Based Decision-Making.
    Chien S; Wiehler A; Spezio M; Gläscher J
    J Neurosci; 2016 May; 36(18):5003-12. PubMed ID: 27147653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The neural correlates of subjective value during intertemporal choice.
    Kable JW; Glimcher PW
    Nat Neurosci; 2007 Dec; 10(12):1625-33. PubMed ID: 17982449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural correlates of reward-based spatial learning in persons with cocaine dependence.
    Tau GZ; Marsh R; Wang Z; Torres-Sanchez T; Graniello B; Hao X; Xu D; Packard MG; Duan Y; Kangarlu A; Martinez D; Peterson BS
    Neuropsychopharmacology; 2014 Feb; 39(3):545-55. PubMed ID: 23917430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deciding when to decide: time-variant sequential sampling models explain the emergence of value-based decisions in the human brain.
    Gluth S; Rieskamp J; Büchel C
    J Neurosci; 2012 Aug; 32(31):10686-98. PubMed ID: 22855817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of emotional preferences on value-based decision-making are mediated by mentalizing and not reward networks.
    Evans S; Fleming SM; Dolan RJ; Averbeck BB
    J Cogn Neurosci; 2011 Sep; 23(9):2197-210. PubMed ID: 20946058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model-based spatial navigation in the hippocampus-ventral striatum circuit: A computational analysis.
    Stoianov IP; Pennartz CMA; Lansink CS; Pezzulo G
    PLoS Comput Biol; 2018 Sep; 14(9):e1006316. PubMed ID: 30222746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural basis of decision making guided by emotional outcomes.
    Katahira K; Matsuda YT; Fujimura T; Ueno K; Asamizuya T; Suzuki C; Cheng K; Okanoya K; Okada M
    J Neurophysiol; 2015 May; 113(9):3056-68. PubMed ID: 25695644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human reinforcement learning subdivides structured action spaces by learning effector-specific values.
    Gershman SJ; Pesaran B; Daw ND
    J Neurosci; 2009 Oct; 29(43):13524-31. PubMed ID: 19864565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anterior hippocampus and goal-directed spatial decision making.
    Viard A; Doeller CF; Hartley T; Bird CM; Burgess N
    J Neurosci; 2011 Mar; 31(12):4613-21. PubMed ID: 21430161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural signatures of reinforcement learning correlate with strategy adoption during spatial navigation.
    Anggraini D; Glasauer S; Wunderlich K
    Sci Rep; 2018 Jul; 8(1):10110. PubMed ID: 29973606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping value based planning and extensively trained choice in the human brain.
    Wunderlich K; Dayan P; Dolan RJ
    Nat Neurosci; 2012 Mar; 15(5):786-91. PubMed ID: 22406551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vicarious reinforcement learning signals when instructing others.
    Apps MA; Lesage E; Ramnani N
    J Neurosci; 2015 Feb; 35(7):2904-13. PubMed ID: 25698730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cognitive mappers to creatures of habit: differential engagement of place and response learning mechanisms predicts human navigational behavior.
    Marchette SA; Bakker A; Shelton AL
    J Neurosci; 2011 Oct; 31(43):15264-8. PubMed ID: 22031872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.