These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 21471396)

  • 21. M-type potassium channels modulate the intrinsic excitability of infralimbic neurons and regulate fear expression and extinction.
    Santini E; Porter JT
    J Neurosci; 2010 Sep; 30(37):12379-86. PubMed ID: 20844133
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prefrontal-limbic Functional Connectivity during Acquisition and Extinction of Conditioned Fear.
    Barrett DW; Gonzalez-Lima F
    Neuroscience; 2018 Apr; 376():162-171. PubMed ID: 29477695
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Medial prefrontal cortical innervation of the intercalated nuclear region of the amygdala.
    Pinard CR; Mascagni F; McDonald AJ
    Neuroscience; 2012 Mar; 205():112-24. PubMed ID: 22249157
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prefrontal and Auditory Input to Intercalated Neurons of the Amygdala.
    Strobel C; Marek R; Gooch HM; Sullivan RKP; Sah P
    Cell Rep; 2015 Mar; 10(9):1435-1442. PubMed ID: 25753409
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Excitatory projections from the amygdala to neurons in the nucleus pontis oralis in the rat: an intracellular study.
    Xi M; Fung SJ; Sampogna S; Chase MH
    Neuroscience; 2011 Dec; 197():181-90. PubMed ID: 21955600
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Opioid receptor modulation of a metabolically sensitive ion channel in rat amygdala neurons.
    Chen X; Marrero HG; Freedman JE
    J Neurosci; 2001 Dec; 21(23):9092-100. PubMed ID: 11717342
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Organic cation transporter 3 is densely expressed in the intercalated cell groups of the amygdala: anatomical evidence for a stress hormone-sensitive dopamine clearance system.
    Hill JE; Gasser PJ
    J Chem Neuroanat; 2013 Sep; 52():36-43. PubMed ID: 23694905
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Retrieval of conditioned fear activates the basolateral and intercalated nucleus of amygdala.
    Izumi T; Boku S; Shinmin W; Inoue T; Konno K; Yamaguchi T; Yoshida T; Matsumoto M; Watanabe M; Koyama T; Yoshioka M
    J Neurosci Res; 2011 May; 89(5):773-90. PubMed ID: 21337371
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fear conditioning and extinction differentially modify the intrinsic excitability of infralimbic neurons.
    Santini E; Quirk GJ; Porter JT
    J Neurosci; 2008 Apr; 28(15):4028-36. PubMed ID: 18400902
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of D-cycloserine in conjunction with fear extinction training on extracellular signal-regulated kinase activation in the medial prefrontal cortex and amygdala in rat.
    Gupta SC; Hillman BG; Prakash A; Ugale RR; Stairs DJ; Dravid SM
    Eur J Neurosci; 2013 Jun; 37(11):1811-22. PubMed ID: 23551217
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Infralimbic D2 receptors are necessary for fear extinction and extinction-related tone responses.
    Mueller D; Bravo-Rivera C; Quirk GJ
    Biol Psychiatry; 2010 Dec; 68(11):1055-60. PubMed ID: 20926066
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distinct populations of NMDA receptors at subcortical and cortical inputs to principal cells of the lateral amygdala.
    Weisskopf MG; LeDoux JE
    J Neurophysiol; 1999 Feb; 81(2):930-4. PubMed ID: 10036290
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of elevation of brain magnesium on fear conditioning, fear extinction, and synaptic plasticity in the infralimbic prefrontal cortex and lateral amygdala.
    Abumaria N; Yin B; Zhang L; Li XY; Chen T; Descalzi G; Zhao L; Ahn M; Luo L; Ran C; Zhuo M; Liu G
    J Neurosci; 2011 Oct; 31(42):14871-81. PubMed ID: 22016520
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of the {mu} opioid on excitatory and inhibitory synaptic inputs to periaqueductal gray-projecting neurons in the amygdala.
    Finnegan TF; Chen SR; Pan HL
    J Pharmacol Exp Ther; 2005 Feb; 312(2):441-8. PubMed ID: 15388784
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contextual inhibitory gating of impulse traffic in the intra-amygdaloid network.
    Paré D; Royer S; Smith Y; Lang EJ
    Ann N Y Acad Sci; 2003 Apr; 985():78-91. PubMed ID: 12724150
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Revisiting the role of infralimbic cortex in fear extinction with optogenetics.
    Do-Monte FH; Manzano-Nieves G; Quiñones-Laracuente K; Ramos-Medina L; Quirk GJ
    J Neurosci; 2015 Feb; 35(8):3607-15. PubMed ID: 25716859
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alterations of excitatory transmission in the lateral amygdala during expression and extinction of fear memory.
    Lin HC; Mao SC; Su CL; Gean PW
    Int J Neuropsychopharmacol; 2010 Apr; 13(3):335-45. PubMed ID: 19775504
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An electrophysiological characterization of the projection from the central nucleus of the amygdala to the periaqueductal gray of the rat: the role of opioid receptors.
    da Costa Gomez TM; Behbehani MM
    Brain Res; 1995 Aug; 689(1):21-31. PubMed ID: 8528703
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Distinct subtypes of cholecystokinin (CCK)-containing interneurons of the basolateral amygdala identified using a CCK promoter-specific lentivirus.
    Jasnow AM; Ressler KJ; Hammack SE; Chhatwal JP; Rainnie DG
    J Neurophysiol; 2009 Mar; 101(3):1494-506. PubMed ID: 19164102
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neuregulin-1-dependent control of amygdala microcircuits is critical for fear extinction.
    Chen M; Li Y; Liu Y; Xu H; Bi LL
    Neuropharmacology; 2021 Dec; 201():108842. PubMed ID: 34678375
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.