BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 21471732)

  • 1. Mitochondrial complex I: a central regulator of the aging process.
    Stefanatos R; Sanz A
    Cell Cycle; 2011 May; 10(10):1528-32. PubMed ID: 21471732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of lifespan by the mitochondrial electron transport chain: reactive oxygen species-dependent and reactive oxygen species-independent mechanisms.
    Scialo F; Mallikarjun V; Stefanatos R; Sanz A
    Antioxid Redox Signal; 2013 Dec; 19(16):1953-69. PubMed ID: 22938137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial ROS Produced via Reverse Electron Transport Extend Animal Lifespan.
    Scialò F; Sriram A; Fernández-Ayala D; Gubina N; Lõhmus M; Nelson G; Logan A; Cooper HM; Navas P; Enríquez JA; Murphy MP; Sanz A
    Cell Metab; 2016 Apr; 23(4):725-34. PubMed ID: 27076081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of the yeast NADH dehydrogenase Ndi1 in Drosophila confers increased lifespan independently of dietary restriction.
    Sanz A; Soikkeli M; Portero-Otín M; Wilson A; Kemppainen E; McIlroy G; Ellilä S; Kemppainen KK; Tuomela T; Lakanmaa M; Kiviranta E; Stefanatos R; Dufour E; Hutz B; Naudí A; Jové M; Zeb A; Vartiainen S; Matsuno-Yagi A; Yagi T; Rustin P; Pamplona R; Jacobs HT
    Proc Natl Acad Sci U S A; 2010 May; 107(20):9105-10. PubMed ID: 20435911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial reactive oxygen species: Do they extend or shorten animal lifespan?
    Sanz A
    Biochim Biophys Acta; 2016 Aug; 1857(8):1116-1126. PubMed ID: 26997500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive oxygen species production in cardiac mitochondria after complex I inhibition: Modulation by substrate-dependent regulation of the NADH/NAD(+) ratio.
    Korge P; Calmettes G; Weiss JN
    Free Radic Biol Med; 2016 Jul; 96():22-33. PubMed ID: 27068062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complex-I-ty in aging.
    Hur JH; Stork DA; Walker DW
    J Bioenerg Biomembr; 2014 Aug; 46(4):329-35. PubMed ID: 24961226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial NADH redox potential impacts the reactive oxygen species production of reverse Electron transfer through complex I.
    Dubouchaud H; Walter L; Rigoulet M; Batandier C
    J Bioenerg Biomembr; 2018 Oct; 50(5):367-377. PubMed ID: 30136168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state.
    Kushnareva Y; Murphy AN; Andreyev A
    Biochem J; 2002 Dec; 368(Pt 2):545-53. PubMed ID: 12180906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of reverse electron transfer at mitochondrial complex I by unconventional Notch action in cancer stem cells.
    Ojha R; Tantray I; Rimal S; Mitra S; Cheshier S; Lu B
    Dev Cell; 2022 Jan; 57(2):260-276.e9. PubMed ID: 35077680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial ROS production correlates with, but does not directly regulate lifespan in Drosophila.
    Sanz A; Fernández-Ayala DJ; Stefanatos RK; Jacobs HT
    Aging (Albany NY); 2010 Apr; 2(4):200-23. PubMed ID: 20453260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reverse electron transfer is activated during aging and contributes to aging and age-related disease.
    Rimal S; Tantray I; Li Y; Pal Khaket T; Li Y; Bhurtel S; Li W; Zeng C; Lu B
    EMBO Rep; 2023 Apr; 24(4):e55548. PubMed ID: 36794623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sites of generation of reactive oxygen species in homogenates of brain tissue determined with the use of respiratory substrates and inhibitors.
    Kudin AP; Malinska D; Kunz WS
    Biochim Biophys Acta; 2008; 1777(7-8):689-95. PubMed ID: 18510942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forty percent methionine restriction decreases mitochondrial oxygen radical production and leak at complex I during forward electron flow and lowers oxidative damage to proteins and mitochondrial DNA in rat kidney and brain mitochondria.
    Caro P; Gomez J; Sanchez I; Naudi A; Ayala V; López-Torres M; Pamplona R; Barja G
    Rejuvenation Res; 2009 Dec; 12(6):421-34. PubMed ID: 20041736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial dysfunction in rat brain with aging Involvement of complex I, reactive oxygen species and cardiolipin.
    Petrosillo G; Matera M; Casanova G; Ruggiero FM; Paradies G
    Neurochem Int; 2008 Nov; 53(5):126-31. PubMed ID: 18657582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of reactive oxygen species by the mitochondrial electron transport chain in Drosophila melanogaster.
    Sanz A; Stefanatos R; McIlroy G
    J Bioenerg Biomembr; 2010 Apr; 42(2):135-42. PubMed ID: 20300811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Interplay Between Respiratory Supercomplexes and ROS in Aging.
    Genova ML; Lenaz G
    Antioxid Redox Signal; 2015 Jul; 23(3):208-38. PubMed ID: 25711676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial electron transport chain dysfunction during development does not extend lifespan in Drosophila melanogaster.
    Rera M; Monnier V; Tricoire H
    Mech Ageing Dev; 2010 Feb; 131(2):156-64. PubMed ID: 20096722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between oxidative stress and lifespan in Daphnia pulex.
    Ukhueduan B; Schumpert C; Kim E; Dudycha JL; Patel RC
    Sci Rep; 2022 Feb; 12(1):2354. PubMed ID: 35149730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generator-specific targets of mitochondrial reactive oxygen species.
    Bleier L; Wittig I; Heide H; Steger M; Brandt U; Dröse S
    Free Radic Biol Med; 2015 Jan; 78():1-10. PubMed ID: 25451644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.