These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 21472171)
1. In situ Raman studies during sulfidation, and operando Raman-GC during ammoxidation reaction using nickel-containing catalysts: a valuable tool to identify the transformations of catalytic species. Guerrero-Pérez MO; Rojas E; Gutiérrez-Alejandre A; Ramírez J; Sánchez-Minero F; Fernández-Vargas C; Bañares MA Phys Chem Chem Phys; 2011 May; 13(20):9260-7. PubMed ID: 21472171 [TBL] [Abstract][Full Text] [Related]
2. In situ observation of Ni-Mo-S phase formed on NiMo/Al(2)O(3) catalyst sulfided at high pressure by means of Ni and Mo K-edge EXAFS spectroscopy. Koizumi N; Hamabe Y; Jung S; Suzuki Y; Yoshida S; Yamada M J Synchrotron Radiat; 2010 May; 17(3):414-24. PubMed ID: 20400842 [TBL] [Abstract][Full Text] [Related]
3. Operando and in situ Raman studies of alumina-supported vanadium phosphate catalysts in propane ammoxidation reaction: activity, selectivity and active phase formation. Mikolajska E; Rasmussen SB; Lewandowska AE; Bañares MA Phys Chem Chem Phys; 2012 Feb; 14(7):2128-36. PubMed ID: 21993840 [TBL] [Abstract][Full Text] [Related]
4. Probe molecule chemisorption-low energy ion scattering study of surface active sites present in the orthorhombic Mo-V-(Te-Nb)-O catalysts for propane (amm)oxidation. Guliants VV; Bhandari R; Hughett AR; Bhatt S; Schuler BD; Brongersma HH; Knoester A; Gaffney AM; Han S J Phys Chem B; 2006 Mar; 110(12):6129-40. PubMed ID: 16553426 [TBL] [Abstract][Full Text] [Related]
5. Determination of the chemical nature of active surface sites present on bulk mixed metal oxide catalysts. Wachs IE; Jehng JM; Ueda W J Phys Chem B; 2005 Feb; 109(6):2275-84. PubMed ID: 16851220 [TBL] [Abstract][Full Text] [Related]
6. Roles of surface Te, Nb, and Sb oxides in propane oxidation to acrylic acid over bulk orthorhombic Mo-V-O phase. Guliants VV; Bhandari R; Swaminathan B; Vasudevan VK; Brongersma HH; Knoester A; Gaffney AM; Han S J Phys Chem B; 2005 Dec; 109(50):24046-55. PubMed ID: 16375396 [TBL] [Abstract][Full Text] [Related]
7. Niobium phosphates as new highly selective catalysts for the oxidative dehydrogenation of ethane. Weng W; Davies M; Whiting G; Solsona B; Kiely CJ; Carley AF; Taylor SH Phys Chem Chem Phys; 2011 Oct; 13(38):17395-404. PubMed ID: 21881631 [TBL] [Abstract][Full Text] [Related]
8. Surface and bulk aspects of mixed oxide catalytic nanoparticles: oxidation and dehydration of CH(3)OH by polyoxometallates. Nakka L; Molinari JE; Wachs IE J Am Chem Soc; 2009 Oct; 131(42):15544-54. PubMed ID: 19807071 [TBL] [Abstract][Full Text] [Related]
9. An operando Raman study of molecular structure and reactivity of molybdenum(VI) oxide supported on anatase for the oxidative dehydrogenation of ethane. Tsilomelekis G; Boghosian S Phys Chem Chem Phys; 2012 Feb; 14(7):2216-28. PubMed ID: 22143865 [TBL] [Abstract][Full Text] [Related]
10. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials. Laycock CJ; Staniforth JZ; Ormerod RM Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706 [TBL] [Abstract][Full Text] [Related]
11. Monitoring surface metal oxide catalytic active sites with Raman spectroscopy. Wachs IE; Roberts CA Chem Soc Rev; 2010 Dec; 39(12):5002-17. PubMed ID: 21038054 [TBL] [Abstract][Full Text] [Related]
12. Characterization of active sites over reduced Ni-Mo/Al(2)O(3) catalysts for hydrogenation of linear aldehydes. Wang X; Ozkan US J Phys Chem B; 2005 Feb; 109(5):1882-90. PubMed ID: 16851170 [TBL] [Abstract][Full Text] [Related]
13. Correlations between acidity, surface structure, and catalytic activity of niobium oxide supported on zirconia. Onfroy T; Clet G; Houalla M J Phys Chem B; 2005 Aug; 109(30):14588-94. PubMed ID: 16852839 [TBL] [Abstract][Full Text] [Related]
14. Deactivation mechanisms of Ni-based tar reforming catalysts as monitored by X-ray absorption spectroscopy. Yung MM; Kuhn JN Langmuir; 2010 Nov; 26(21):16589-94. PubMed ID: 20586431 [TBL] [Abstract][Full Text] [Related]
15. Quasi in situ Ni K-edge EXAFS investigation of the spent NiMo catalyst from ultra-deep hydrodesulfurization of gas oil in a commercial plant. Hamabe Y; Jung S; Suzuki H; Koizumi N; Yamada M J Synchrotron Radiat; 2010 Jul; 17(4):530-9. PubMed ID: 20567086 [TBL] [Abstract][Full Text] [Related]
16. Flame synthesis of nanosized Cu-Ce-O, Ni-Ce-O, and Fe-Ce-O catalysts for the water-gas shift (WGS) reaction. Pati RK; Lee IC; Hou S; Akhuemonkhan O; Gaskell KJ; Wang Q; Frenkel AI; Chu D; Salamanca-Riba LG; Ehrman SH ACS Appl Mater Interfaces; 2009 Nov; 1(11):2624-35. PubMed ID: 20356136 [TBL] [Abstract][Full Text] [Related]
17. In situ UV-vis-NIR diffuse reflectance and Raman spectroscopy and catalytic activity studies of propane oxidative dehydrogenation over supported CrO3/ZrO2 catalysts. Malleswara Rao TV; Deo G; Jehng JM; Wachs IE Langmuir; 2004 Aug; 20(17):7159-65. PubMed ID: 15301500 [TBL] [Abstract][Full Text] [Related]
18. Preparation of Ni-based metal monolithic catalysts and a study of their performance in methane reforming with CO2. Wang K; Li X; Ji S; Huang B; Li C ChemSusChem; 2008; 1(6):527-33. PubMed ID: 18702151 [TBL] [Abstract][Full Text] [Related]
19. Structure of the active sites of Co-Mo Hydrodesulfurization catalysts as studied by magnetic susceptibility measurement and NO adsorption. Okamoto Y; Kawano M; Kawabata T; Kubota T; Hiromitsu I J Phys Chem B; 2005 Jan; 109(1):288-96. PubMed ID: 16851015 [TBL] [Abstract][Full Text] [Related]
20. QEXAFS study of the sulfidation of NiMo/Al2O3 hydrotreating catalysts. Cattaneo R; Shido T; Prins R J Synchrotron Radiat; 2001 Mar; 8(Pt 2):158-62. PubMed ID: 11512716 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]