These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 21472171)
21. Alumina-Supported NiMo Hydrotreating Catalysts-Aspects of 3D Structure, Synthesis, and Activity. Li M; Ihli J; Verheijen MA; Holler M; Guizar-Sicairos M; van Bokhoven JA; Hensen EJM; Weber T J Phys Chem C Nanomater Interfaces; 2022 Nov; 126(43):18536-18549. PubMed ID: 36366758 [TBL] [Abstract][Full Text] [Related]
22. High throughput operando studies using Fourier transform infrared imaging and Raman spectroscopy. Li G; Hu D; Xia G; White JM; Zhang C Rev Sci Instrum; 2008 Jul; 79(7):074101. PubMed ID: 18681719 [TBL] [Abstract][Full Text] [Related]
23. Envisaging the physicochemical processes during the preparation of supported catalysts: Raman microscopy on the impregnation of Mo onto Al2O3 extrudates. Bergwerff JA; Visser T; Leliveld BR; Rossenaar BD; de Jong KP; Weckhuysen BM J Am Chem Soc; 2004 Nov; 126(44):14548-56. PubMed ID: 15521775 [TBL] [Abstract][Full Text] [Related]
24. Why does the Conductivity of a Nickel Catalyst Increase during Sulfidation? An Exemplary Study Using an In Operando Sensor Device. Fremerey P; Jess A; Moos R Sensors (Basel); 2015 Oct; 15(10):27021-34. PubMed ID: 26512669 [TBL] [Abstract][Full Text] [Related]
25. Monitoring catalysts at work in their final form: spectroscopic investigations on a monolithic catalyst. Rasmussen SB; Bañares MA; Bazin P; Due-Hansen J; Ávila P; Daturi M Phys Chem Chem Phys; 2012 Feb; 14(7):2171-7. PubMed ID: 22009277 [TBL] [Abstract][Full Text] [Related]
26. Elucidation of the molecular structure of hydrated vanadium oxide species by X-ray absorption spectroscopy: correlation between the V...V coordination number and distance and the point of zero charge of the support oxide. Keller DE; Koningsberger DC; Weckhuysen BM Phys Chem Chem Phys; 2006 Nov; 8(41):4814-24. PubMed ID: 17043726 [TBL] [Abstract][Full Text] [Related]
27. Green synthesis of Ni-Nb oxide catalysts for low-temperature oxidative dehydrogenation of ethane. Zhu H; Rosenfeld DC; Anjum DH; Caps V; Basset JM ChemSusChem; 2015 Apr; 8(7):1254-63. PubMed ID: 25755222 [TBL] [Abstract][Full Text] [Related]
28. Surface properties of Ni-Pt/SiO2 catalysts for N2O decomposition and reduction by H2. Arenas-Alatorre J; Gómez-Cortés A; Avalos-Borja M; Díaz G J Phys Chem B; 2005 Feb; 109(6):2371-6. PubMed ID: 16851231 [TBL] [Abstract][Full Text] [Related]
29. Hydrothermal synthesis of new wolframite type trimetallic materials and their use in oxidative dehydrogenation of propane. Salamanca M; Licea YE; Echavarría A; Faro AC; Palacio LA Phys Chem Chem Phys; 2009 Nov; 11(41):9583-91. PubMed ID: 19830345 [TBL] [Abstract][Full Text] [Related]
30. Evolution of nickel speciation during preparation of Ni-SiO(2) catalysts: effect of the number of chelating ligands in [Ni(en)x(H2O)6-2x]2+ precursor complexes. Sun KQ; Marceau E; Che M Phys Chem Chem Phys; 2006 Apr; 8(14):1731-8. PubMed ID: 16633658 [TBL] [Abstract][Full Text] [Related]
31. Monitoring silica supported molybdenum oxide catalysts at work: a Raman spectroscopic study. Thielemann JP; Hess C Chemphyschem; 2013 Feb; 14(2):441-7. PubMed ID: 23281050 [TBL] [Abstract][Full Text] [Related]
32. The Effect of Exposed Facets of Ceria to the Nickel Species in Nickel-Ceria Catalysts and Their Performance in a NO + CO Reaction. Tang K; Liu W; Li J; Guo J; Zhang J; Wang S; Niu S; Yang Y ACS Appl Mater Interfaces; 2015 Dec; 7(48):26839-49. PubMed ID: 26573213 [TBL] [Abstract][Full Text] [Related]
33. Sulfur uptake determination on Ni containing molybdena-alumina samples by radioisotope tracer technique. Tétényi P; Ollár T; Schay Z; Schnörch P; Szarvas T Appl Radiat Isot; 2008 Sep; 66(9):1190-5. PubMed ID: 18372183 [TBL] [Abstract][Full Text] [Related]
34. Catalytic functions of Mo/Ni/MgO in the synthesis of thin carbon nanotubes. Zhou LP; Ohta K; Kuroda K; Lei N; Matsuishi K; Gao L; Matsumoto T; Nakamura J J Phys Chem B; 2005 Mar; 109(10):4439-47. PubMed ID: 16851515 [TBL] [Abstract][Full Text] [Related]
35. Steam reforming of biomass gasification tar using benzene as a model compound over various Ni supported metal oxide catalysts. Park HJ; Park SH; Sohn JM; Park J; Jeon JK; Kim SS; Park YK Bioresour Technol; 2010 Jan; 101 Suppl 1():S101-3. PubMed ID: 19369069 [TBL] [Abstract][Full Text] [Related]
36. Iridium Ziegler-type hydrogenation catalysts made from [(1,5-COD)Ir(mu-O2C8H15)](2) and AlEt3: spectroscopic and kinetic evidence for the Ir(n) species present and for nanoparticles as the fastest catalyst. Alley WM; Hamdemir IK; Wang Q; Frenkel AI; Li L; Yang JC; Menard LD; Nuzzo RG; Ozkar S; Johnson KA; Finke RG Inorg Chem; 2010 Sep; 49(17):8131-47. PubMed ID: 20681520 [TBL] [Abstract][Full Text] [Related]
37. A study of the surface region of the Mo-V-Te-O catalysts for propane oxidation to acrylic acid. Guliants VV; Bhandari R; Brongersma HH; Knoester A; Gaffney AM; Han S J Phys Chem B; 2005 May; 109(20):10234-42. PubMed ID: 16852240 [TBL] [Abstract][Full Text] [Related]
38. Effect of nickel-niobium co-doping on structural, electromechanical, and dielectric properties of lead titanate ceramics. Amarande L; Miclea C; Tanasoiu T; Iuga A; Cioangher MC; Trupina L; Grecu MN; Pasuk I IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Sep; 56(9):1792-8. PubMed ID: 19811978 [TBL] [Abstract][Full Text] [Related]
39. Phase evolution in low-dimensional niobium oxide synthesized by a topochemical method. Li L; Deng J; Yu R; Chen J; Wang X; Xing X Inorg Chem; 2010 Feb; 49(4):1397-403. PubMed ID: 20063895 [TBL] [Abstract][Full Text] [Related]
40. WOx/ZrO2 catalysts prepared by anionic exchange: in situ Raman investigation from the precursor solutions to the calcined catalysts. Loridant S; Feche C; Essayem N; Figueras F J Phys Chem B; 2005 Mar; 109(12):5631-7. PubMed ID: 16851607 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]