BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 21472521)

  • 1. Peroxide bond driven dissociation of hydroperoxy-cholesterol esters following collision induced dissociation.
    Hutchins PM; Murphy RC
    J Am Soc Mass Spectrom; 2011 May; 22(5):867-74. PubMed ID: 21472521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tandem mass spectrometry analysis of linoleic and arachidonic acid hydroperoxides via promotion of alkali metal adduct formation.
    Ito J; Mizuochi S; Nakagawa K; Kato S; Miyazawa T
    Anal Chem; 2015; 87(9):4980-7. PubMed ID: 25874840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct electrospray tandem mass spectrometry of the unstable hydroperoxy bishemiacetal product derived from cholesterol ozonolysis.
    Pulfer MK; Harrison K; Murphy RC
    J Am Soc Mass Spectrom; 2004 Feb; 15(2):194-202. PubMed ID: 14766287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Payne rearrangement during analysis of epoxyalcohols of linoleic and alpha-linolenic acids by normal phase liquid chromatography with tandem mass spectrometry.
    Oliw EH; Garscha U; Nilsson T; Cristea M
    Anal Biochem; 2006 Jul; 354(1):111-26. PubMed ID: 16712763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid hydroperoxides as a source of singlet molecular oxygen.
    Miyamoto S; Di Mascio P
    Subcell Biochem; 2014; 77():3-20. PubMed ID: 24374914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The hydroperoxide moiety of aliphatic lipid hydroperoxides is not affected by hypochlorous acid.
    Zschaler J; Arnhold J
    Chem Phys Lipids; 2014 Dec; 184():42-51. PubMed ID: 25260666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two distinct pathways of formation of 4-hydroxynonenal. Mechanisms of nonenzymatic transformation of the 9- and 13-hydroperoxides of linoleic acid to 4-hydroxyalkenals.
    Schneider C; Tallman KA; Porter NA; Brash AR
    J Biol Chem; 2001 Jun; 276(24):20831-8. PubMed ID: 11259420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of new geometric isomers of methyl linoleate hydroperoxide and their chromatographic behavior.
    Tokita M; Morita M
    Biosci Biotechnol Biochem; 2000 May; 64(5):1044-6. PubMed ID: 10879477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liquid chromatography coordination ion-spray mass spectrometry (LC-CIS-MS) of docosahexaenoate ester hydroperoxides.
    Seal JR; Porter NA
    Anal Bioanal Chem; 2004 Feb; 378(4):1007-13. PubMed ID: 14634702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of oligomeric alkenylperoxides during the oxidation of unsaturated fatty acids: an electrospray ionization tandem mass spectrometry study.
    Villaverde JJ; Santos SA; Maciel E; Simões MM; Pascoal Neto C; Domingues MR; Silvestre AJ
    J Mass Spectrom; 2012 Feb; 47(2):163-72. PubMed ID: 22359325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel chiral stationary phase HPLC-MS/MS method to discriminate between enzymatic oxidation and auto-oxidation of phosphatidylcholine.
    Ito J; Nakagawa K; Kato S; Hirokawa T; Kuwahara S; Nagai T; Miyazawa T
    Anal Bioanal Chem; 2016 Nov; 408(27):7785-7793. PubMed ID: 27549797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High performance liquid chromatography/electron spin resonance/mass spectrometry analyses of radicals formed in an anaerobic reaction of 9- (or 13-) hydroperoxide octadecadienoic acids with ferrous ions.
    Iwahashi H; Hirai T; Kumamoto K
    J Chromatogr A; 2006 Nov; 1132(1-2):67-75. PubMed ID: 16889785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of triacylglycerol oxidation mechanisms in canola oil using liquid chromatography-tandem mass spectrometry.
    Kato S; Shimizu N; Hanzawa Y; Otoki Y; Ito J; Kimura F; Takekoshi S; Sakaino M; Sano T; Eitsuka T; Miyazawa T; Nakagawa K
    NPJ Sci Food; 2018; 2():1. PubMed ID: 31304251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Angiotensin II modification by decomposition products of linoleic acid-derived lipid hydroperoxide.
    Takahashi R; Goto T; Oe T; Lee SH
    Chem Biol Interact; 2015 Sep; 239():87-99. PubMed ID: 26111765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid 213 nm photodissociation of cationized Sterol lipid ions yield [M]
    West H; Reid GE
    Anal Chim Acta; 2021 Jan; 1141():100-109. PubMed ID: 33248642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of lipid hydroperoxides and long-chain conjugated keto acids by negative ion electrospray mass spectrometry.
    MacMillan DK; Murphy RC
    J Am Soc Mass Spectrom; 1995 Dec; 6(12):1190-201. PubMed ID: 24214070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Establishment of mass spectrometric fingerprints of novel synthetic cholesteryl neoglycolipids: the presence of a unique C-glycoside species during electrospray ionization and during collision-induced dissociation tandem mass spectrometry.
    El-Aneed A; Banoub J; Koen-Alonso M; Boullanger P; Lafont D
    J Am Soc Mass Spectrom; 2007 Feb; 18(2):294-310. PubMed ID: 17088074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of lipoxygenase-derived fatty acid hydroperoxides by electrospray ionization tandem mass spectrometry.
    Schneider C; Schreier P; Herderich M
    Lipids; 1997 Mar; 32(3):331-6. PubMed ID: 9076671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perhydroxyl radical (HOO.) initiated lipid peroxidation. The role of fatty acid hydroperoxides.
    Aikens J; Dix TA
    J Biol Chem; 1991 Aug; 266(23):15091-8. PubMed ID: 1869544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of core aldehydes among in vitro peroxidation products of cholesteryl esters.
    Kamido H; Kuksis A; Marai L; Myher JJ
    Lipids; 1993 Apr; 28(4):331-6. PubMed ID: 8487625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.