BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 21472524)

  • 1. Charge states of y ions in the collision-induced dissociation of doubly charged tryptic peptide ions.
    Neta P; Stein SE
    J Am Soc Mass Spectrom; 2011 May; 22(5):898-905. PubMed ID: 21472524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Occurrence of C-terminal residue exclusion in peptide fragmentation by ESI and MALDI tandem mass spectrometry.
    Dupré M; Cantel S; Martinez J; Enjalbal C
    J Am Soc Mass Spectrom; 2012 Feb; 23(2):330-46. PubMed ID: 22095165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size Dependent Fragmentation Chemistry of Short Doubly Protonated Tryptic Peptides.
    Guan S; Bythell BJ
    J Am Soc Mass Spectrom; 2021 Apr; 32(4):1020-1032. PubMed ID: 33779179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dehydration versus deamination of N-terminal glutamine in collision-induced dissociation of protonated peptides.
    Neta P; Pu QL; Kilpatrick L; Yang X; Stein SE
    J Am Soc Mass Spectrom; 2007 Jan; 18(1):27-36. PubMed ID: 17005415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of infrared multiphoton dissociation and collision-induced dissociation of supercharged peptides in ion traps.
    Madsen JA; Brodbelt JS
    J Am Soc Mass Spectrom; 2009 Mar; 20(3):349-58. PubMed ID: 19036605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of y + 10 and y + 11 ions in the collision-induced dissociation of peptide ions.
    Kilpatrick LE; Neta P; Yang X; Simón-Manso Y; Liang Y; Stein SE
    J Am Soc Mass Spectrom; 2012 Apr; 23(4):655-63. PubMed ID: 22161574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical characterization of ion trap tandem mass spectra from doubly charged tryptic peptides.
    Tabb DL; Smith LL; Breci LA; Wysocki VH; Lin D; Yates JR
    Anal Chem; 2003 Mar; 75(5):1155-63. PubMed ID: 12641236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical characterization of the charge state and residue dependence of low-energy CID peptide dissociation patterns.
    Huang Y; Triscari JM; Tseng GC; Pasa-Tolic L; Lipton MS; Smith RD; Wysocki VH
    Anal Chem; 2005 Sep; 77(18):5800-13. PubMed ID: 16159109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collision energy optimization of b- and y-ions for multiple reaction monitoring mass spectrometry.
    Holstein Sherwood CA; Gafken PR; Martin DB
    J Proteome Res; 2011 Jan; 10(1):231-40. PubMed ID: 20968307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fragmentation Patterns and Mechanisms of Singly and Doubly Protonated Peptoids Studied by Collision Induced Dissociation.
    Ren J; Tian Y; Hossain E; Connolly MD
    J Am Soc Mass Spectrom; 2016 Apr; 27(4):646-61. PubMed ID: 26832347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-covalent interactions of alkali metal cations with singly charged tryptic peptides.
    Rožman M; Gaskell SJ
    J Mass Spectrom; 2010 Dec; 45(12):1409-15. PubMed ID: 21031360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of the position of internal histidine residues on the collision-induced fragmentation of triply protonated tryptic peptides.
    Willard BB; Kinter M
    J Am Soc Mass Spectrom; 2001 Dec; 12(12):1262-71. PubMed ID: 11766753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gas-phase fragmentation characteristics of benzyl-aminated lysyl-containing tryptic peptides.
    Simon ES; Papoulias PG; Andrews PC
    J Am Soc Mass Spectrom; 2010 Sep; 21(9):1624-32. PubMed ID: 20471281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the identity of Xaa on the fragmentation modes of doubly-protonated Ala-Ala-Xaa-Ala-Ala-Ala-Arg.
    Harrison AG
    J Am Soc Mass Spectrom; 2011 May; 22(5):906-11. PubMed ID: 21472525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion trap versus low-energy beam-type collision-induced dissociation of protonated ubiquitin ions.
    Xia Y; Liang X; McLuckey SA
    Anal Chem; 2006 Feb; 78(4):1218-27. PubMed ID: 16478115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of the dissociation of a charge-reduced phosphopeptide formed by electron transfer from an alkali metal target.
    Hayakawa S; Hashimoto M; Nagao H; Awazu K; Toyoda M; Ichihara T; Shigeri Y
    Rapid Commun Mass Spectrom; 2008; 22(4):567-72. PubMed ID: 18229886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An investigation of fragmentation mechanisms of doubly protonated tryptic peptides.
    Tang XJ; Boyd RK
    Rapid Commun Mass Spectrom; 1992 Nov; 6(11):651-7. PubMed ID: 1467549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of N-terminal glutamic acid and glutamine on fragmentation of peptide ions.
    Godugu B; Neta P; Simón-Manso Y; Stein SE
    J Am Soc Mass Spectrom; 2010 Jul; 21(7):1169-76. PubMed ID: 20413325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical and mechanistic approaches to understanding the gas-phase fragmentation behavior of methionine sulfoxide containing peptides.
    Reid GE; Roberts KD; Kapp EA; Simpson RI
    J Proteome Res; 2004; 3(4):751-9. PubMed ID: 15359728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of transition metal ion coordination on the collision-induced dissociation of polyalanines.
    Watson HM; Vincent JB; Cassady CJ
    J Mass Spectrom; 2011 Nov; 46(11):1099-107. PubMed ID: 22124980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.