These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 21472556)

  • 1. Determination of the deuterium abundances in water from 156 to 10,000 ppm by SIFT-MS.
    Španěl P; Shestivska V; Chippendale TW; Smith D
    J Am Soc Mass Spectrom; 2011 Jan; 22(1):179-86. PubMed ID: 21472556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accuracy and precision of flowing afterglow mass spectrometry for the determination of the deuterium abundance in the headspace of aqueous liquids and exhaled breath water.
    Spanel P; Smith D
    Rapid Commun Mass Spectrom; 2001; 15(11):867-72. PubMed ID: 11382934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-line determination of the deuterium abundance in breath water vapour by flowing afterglow mass spectrometry with applications to measurements of total body water.
    Smith D; Spanel P
    Rapid Commun Mass Spectrom; 2001; 15(1):25-32. PubMed ID: 11135421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative measurements of total body water in healthy volunteers by online breath deuterium measurement and other near-subject methods.
    Smith D; Engel B; Diskin AM; Spanel P; Davies SJ
    Am J Clin Nutr; 2002 Dec; 76(6):1295-301. PubMed ID: 12450896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of water vapour on selected ion flow tube mass spectrometric analyses of trace gases in humid air and breath.
    Spanĕl P; Smith D
    Rapid Commun Mass Spectrom; 2000; 14(20):1898-906. PubMed ID: 11013418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selected ion flow tube mass spectrometry analyses of stable isotopes in water: isotopic composition of H3O+ and H3O+ (H2O)3 ions in exchange reactions with water vapor.
    Spanel P; Smith D
    J Am Soc Mass Spectrom; 2000 Oct; 11(10):866-75. PubMed ID: 11014448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis.
    Smith D; Spanel P
    Mass Spectrom Rev; 2005; 24(5):661-700. PubMed ID: 15495143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The quantification of carbon dioxide in humid air and exhaled breath by selected ion flow tube mass spectrometry.
    Smith D; Pysanenko A; Spanel P
    Rapid Commun Mass Spectrom; 2009 May; 23(10):1419-25. PubMed ID: 19347971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of methane in humid air and exhaled breath using selected ion flow tube mass spectrometry.
    Dryahina K; Smith D; Spanel P
    Rapid Commun Mass Spectrom; 2010 May; 24(9):1296-304. PubMed ID: 20391601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordinated FA-MS and SIFT-MS analyses of breath following ingestion of D2O and ethanol: total body water, dispersal kinetics and ethanol metabolism.
    Spanel P; Wang T; Smith D
    Physiol Meas; 2005 Aug; 26(4):447-57. PubMed ID: 15886440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ternary association reactions of H
    Smith D; Španěl P
    Rapid Commun Mass Spectrom; 2022 Mar; 36(6):e9241. PubMed ID: 34904315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selected Ion Flow-Drift Tube Mass Spectrometry: Quantification of Volatile Compounds in Air and Breath.
    Spesyvyi A; Smith D; Španěl P
    Anal Chem; 2015 Dec; 87(24):12151-60. PubMed ID: 26583448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SIFT-MS and FA-MS methods for ambient gas phase analysis: developments and applications in the UK.
    Smith D; Španěl P
    Analyst; 2015 Apr; 140(8):2573-91. PubMed ID: 25537985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of methyl thiocyanate in the headspace of Pseudomonas aeruginosa cultures and in the breath of cystic fibrosis patients by selected ion flow tube mass spectrometry.
    Shestivska V; Nemec A; Dřevínek P; Sovová K; Dryahina K; Spaněl P
    Rapid Commun Mass Spectrom; 2011 Sep; 25(17):2459-67. PubMed ID: 21818806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progress in SIFT-MS: breath analysis and other applications.
    Spaněl P; Smith D
    Mass Spectrom Rev; 2011; 30(2):236-67. PubMed ID: 20648679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time versus thermal desorption selected ion flow tube mass spectrometry for quantification of breath volatiles.
    Slingers G; Vanden Eede M; Lindekens J; Spruyt M; Goelen E; Raes M; Koppen G
    Rapid Commun Mass Spectrom; 2021 Feb; 35(4):e8994. PubMed ID: 33125775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid measurement of deuterium content of breath following oral ingestion to determine body water.
    Davies S; Spanel P; Smith D
    Physiol Meas; 2001 Nov; 22(4):651-9. PubMed ID: 11761073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A non-invasive, on-line deuterium dilution technique for the measurement of total body water in haemodialysis patients.
    Chan C; Smith D; Spanel P; McIntyre CW; Davies SJ
    Nephrol Dial Transplant; 2008 Jun; 23(6):2064-70. PubMed ID: 18326883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct detection and quantification of malondialdehyde vapour in humid air using selected ion flow tube mass spectrometry supported by gas chromatography/mass spectrometry.
    Shestivska V; Antonowicz SS; Dryahina K; Kubišta J; Smith D; Španěl P
    Rapid Commun Mass Spectrom; 2015 Jun; 29(11):1069-79. PubMed ID: 26044275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selected ion flow tube study of the reactions of H
    Španěl P; Žabka J; Zymak I; Smith D
    Rapid Commun Mass Spectrom; 2017 Mar; 31(5):437-446. PubMed ID: 27983765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.