These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 21472566)

  • 1. Unusual fragmentation of β-linked peptides by ExD tandem mass spectrometry.
    Sargaeva NP; Lin C; O'Connor PB
    J Am Soc Mass Spectrom; 2011 Mar; 22(3):480-91. PubMed ID: 21472566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differentiating N-terminal aspartic and isoaspartic acid residues in peptides.
    Sargaeva NP; Lin C; O'Connor PB
    Anal Chem; 2011 Sep; 83(17):6675-82. PubMed ID: 21736361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radical stability directs electron capture and transfer dissociation of β-amino acids in peptides.
    Ben Hamidane H; Vorobyev A; Larregola M; Lukaszuk A; Tourwé D; Lavielle S; Karoyan P; Tsybin YO
    Chemistry; 2010 Apr; 16(15):4612-22. PubMed ID: 20235239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron transfer dissociation with supplemental activation to differentiate aspartic and isoaspartic residues in doubly charged peptide cations.
    Chan WY; Chan TW; O'Connor PB
    J Am Soc Mass Spectrom; 2010 Jun; 21(6):1012-5. PubMed ID: 20304674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deamidation: Differentiation of aspartyl from isoaspartyl products in peptides by electron capture dissociation.
    Cournoyer JJ; Pittman JL; Ivleva VB; Fallows E; Waskell L; Costello CE; O'Connor PB
    Protein Sci; 2005 Feb; 14(2):452-63. PubMed ID: 15659375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrimination of Aspartic and Isoaspartic Acid Residues in Peptides by Tandem Mass Spectrometry with Hydrogen Attachment Dissociation.
    Asakawa D; Iwamoto S; Tanaka K
    Anal Chem; 2024 May; 96(21):8552-8559. PubMed ID: 38741470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radical-driven peptide backbone dissociation tandem mass spectrometry.
    Oh HB; Moon B
    Mass Spectrom Rev; 2015; 34(2):116-32. PubMed ID: 24863492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge remote fragmentation in electron capture and electron transfer dissociation.
    Li X; Lin C; Han L; Costello CE; O'Connor PB
    J Am Soc Mass Spectrom; 2010 Apr; 21(4):646-56. PubMed ID: 20171118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of ECD/ETD to identify the site of electrostatic interaction in noncovalent complexes.
    Jackson SN; Dutta S; Woods AS
    J Am Soc Mass Spectrom; 2009 Feb; 20(2):176-9. PubMed ID: 18835725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of aspartic and isoaspartic acid residues in amyloid beta peptides, including Abeta1-42, using electron-ion reactions.
    Sargaeva NP; Lin C; O'Connor PB
    Anal Chem; 2009 Dec; 81(23):9778-86. PubMed ID: 19873993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unequivocal Identification of Aspartic Acid and
    Hui JO; Flick T; Loo JA; Campuzano IDG
    J Am Soc Mass Spectrom; 2021 Aug; 32(8):1901-1909. PubMed ID: 33390012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective cleavage of isoaspartyl peptide bonds by hydroxylamine after methyltransferase priming.
    Zhu JX; Aswad DW
    Anal Biochem; 2007 May; 364(1):1-7. PubMed ID: 17376395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved Protein and PTM Characterization with a Practical Electron-Based Fragmentation on Q-TOF Instruments.
    Beckman JS; Voinov VG; Hare M; Sturgeon D; Vasil'ev Y; Oppenheimer D; Shaw JB; Wu S; Glaskin R; Klein C; Schwarzer C; Stafford G
    J Am Soc Mass Spectrom; 2021 Aug; 32(8):2081-2091. PubMed ID: 33914527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differentiation of Aspartic and Isoaspartic Acid Using 193 nm Ultraviolet Photodissociation Mass Spectrometry.
    Bashyal A; Hui JO; Flick T; Dykstra AB; Zhang Q; Campuzano IDG; Brodbelt JS
    Anal Chem; 2023 Aug; 95(30):11510-11517. PubMed ID: 37458293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Disulfide-Linked Peptides Using Tandem Mass Spectrometry Coupled with Automated Data Analysis Software.
    Liang Z; McGuinness KN; Crespo A; Zhong W
    J Am Soc Mass Spectrom; 2018 May; 29(5):903-912. PubMed ID: 29372552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron transfer dissociation (ETD) of peptides containing intrachain disulfide bonds.
    Cole SR; Ma X; Zhang X; Xia Y
    J Am Soc Mass Spectrom; 2012 Feb; 23(2):310-20. PubMed ID: 22161508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron capture dissociation mass spectrometry in characterization of peptides and proteins.
    Bakhtiar R; Guan Z
    Biotechnol Lett; 2006 Jul; 28(14):1047-59. PubMed ID: 16794768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. w-Type ions formed by electron transfer dissociation of Cys-containing peptides investigated by infrared ion spectroscopy.
    Kempkes LJM; Martens J; Berden G; Oomens J
    J Mass Spectrom; 2018 Dec; 53(12):1207-1213. PubMed ID: 30281881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinguishing Aspartic and Isoaspartic Acids in Peptides by Several Mass Spectrometric Fragmentation Methods.
    DeGraan-Weber N; Zhang J; Reilly JP
    J Am Soc Mass Spectrom; 2016 Dec; 27(12):2041-2053. PubMed ID: 27613306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection and characterization of methionine oxidation in peptides by collision-induced dissociation and electron capture dissociation.
    Guan Z; Yates NA; Bakhtiar R
    J Am Soc Mass Spectrom; 2003 Jun; 14(6):605-13. PubMed ID: 12781462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.