These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 21472566)

  • 21. In-Source Decay Characterization of Isoaspartate and β-Peptides.
    Yu X; Sargaeva NP; Thompson CJ; Costello CE; Lin C
    Int J Mass Spectrom; 2015 Nov; 390():101-109. PubMed ID: 26644780
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differentiating aspartic acid isomers and epimers with charge transfer dissociation mass spectrometry (CTD-MS).
    Edwards HM; Wu HT; Julian RR; Jackson GP
    Analyst; 2022 Mar; 147(6):1159-1168. PubMed ID: 35188507
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distinguishing and quantifying peptides and proteins containing D-amino acids by tandem mass spectrometry.
    Adams CM; Zubarev RA
    Anal Chem; 2005 Jul; 77(14):4571-80. PubMed ID: 16013875
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A quantitative analysis of spontaneous isoaspartate formation from N-terminal asparaginyl and aspartyl residues.
    Güttler BH; Cynis H; Seifert F; Ludwig HH; Porzel A; Schilling S
    Amino Acids; 2013 Apr; 44(4):1205-14. PubMed ID: 23344882
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Disulfide bond cleavage in TEMPO-free radical initiated peptide sequencing mass spectrometry.
    Lee M; Lee Y; Kang M; Park H; Seong Y; Sung BJ; Moon B; Oh HB
    J Mass Spectrom; 2011 Aug; 46(8):830-9. PubMed ID: 21834022
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differentiation of aspartic and isoaspartic acids using electron transfer dissociation.
    O'Connor PB; Cournoyer JJ; Pitteri SJ; Chrisman PA; McLuckey SA
    J Am Soc Mass Spectrom; 2006 Jan; 17(1):15-19. PubMed ID: 16338146
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Principles of electron capture and transfer dissociation mass spectrometry applied to peptide and protein structure analysis.
    Zhurov KO; Fornelli L; Wodrich MD; Laskay ÜA; Tsybin YO
    Chem Soc Rev; 2013 Jun; 42(12):5014-30. PubMed ID: 23450212
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of isoaspartate in peptides by electrospray tandem mass spectrometry.
    Lehmann WD; Schlosser A; Erben G; Pipkorn R; Bossemeyer D; Kinzel V
    Protein Sci; 2000 Nov; 9(11):2260-8. PubMed ID: 11152137
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nonenzymatic Posttranslational Modifications and Peptide Cleavages Observed in Peptide Epimers.
    Long CC; Antevska A; Mast DH; Okyem S; Sweedler JV; Do TD
    J Am Soc Mass Spectrom; 2023 Sep; 34(9):1898-1907. PubMed ID: 37102735
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of γ-carboxylated tryptic peptides by collision-induced dissociation and electron transfer dissociation mass spectrometry.
    Ramström M; Sandberg H
    Eur J Mass Spectrom (Chichester); 2011; 17(5):497-506. PubMed ID: 22173536
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cascade dissociations of peptide cation-radicals. Part 1. Scope and effects of amino acid residues in penta-, nona-, and decapeptides.
    Chung TW; Hui R; Ledvina A; Coon JJ; Tureček F
    J Am Soc Mass Spectrom; 2012 Aug; 23(8):1336-50. PubMed ID: 22669761
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isoaspartate-containing amyloid precursor protein-derived peptides alter efficacy and specificity of potential beta-secretases.
    Böhme L; Hoffmann T; Manhart S; Wolf R; Demuth HU
    Biol Chem; 2008 Aug; 389(8):1055-66. PubMed ID: 18979630
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of chemical modifications on peptide fragmentation behavior upon electron transfer induced dissociation.
    Hennrich ML; Boersema PJ; van den Toorn H; Mischerikow N; Heck AJ; Mohammed S
    Anal Chem; 2009 Sep; 81(18):7814-22. PubMed ID: 19689115
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of isoaspartic Acid by selective proteolysis with Asp-N and electron transfer dissociation mass spectrometry.
    Ni W; Dai S; Karger BL; Zhou ZS
    Anal Chem; 2010 Sep; 82(17):7485-91. PubMed ID: 20712325
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Occurrence of C-terminal residue exclusion in peptide fragmentation by ESI and MALDI tandem mass spectrometry.
    Dupré M; Cantel S; Martinez J; Enjalbal C
    J Am Soc Mass Spectrom; 2012 Feb; 23(2):330-46. PubMed ID: 22095165
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electron capture dissociation of peptides metalated with alkaline-earth metal ions.
    Fung YM; Liu H; Chan TW
    J Am Soc Mass Spectrom; 2006 Jun; 17(6):757-71. PubMed ID: 16616861
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electron capture dissociation of hydrogen-deficient peptide radical cations.
    Kalli A; Hess S
    J Am Soc Mass Spectrom; 2012 Oct; 23(10):1729-40. PubMed ID: 22855421
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distinguishing d- and l-aspartic and isoaspartic acids in amyloid β peptides with ultrahigh resolution ion mobility spectrometry.
    Zheng X; Deng L; Baker ES; Ibrahim YM; Petyuk VA; Smith RD
    Chem Commun (Camb); 2017 Jul; 53(56):7913-7916. PubMed ID: 28654112
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sequence elucidation of an unknown cyclic peptide of high doping potential by ETD and CID tandem mass spectrometry.
    Guan F; Uboh CE; Soma LR; Rudy J
    J Am Soc Mass Spectrom; 2011 Apr; 22(4):718-30. PubMed ID: 21472610
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electron transfer dissociation of synthetic and natural peptides containing lanthionine/methyllanthionine bridges.
    Dolle AB; Jagadeesh N; Bhaumik S; Prakash S; Biswal HS; Gowd KH
    Rapid Commun Mass Spectrom; 2018 Jun; 32(11):831-843. PubMed ID: 29520895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.