These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 21472582)
1. Characterization of tyrosine nitration and cysteine nitrosylation modifications by metastable atom-activation dissociation mass spectrometry. Cook SL; Jackson GP J Am Soc Mass Spectrom; 2011 Feb; 22(2):221-32. PubMed ID: 21472582 [TBL] [Abstract][Full Text] [Related]
2. Comparison of CID, ETD and metastable atom-activated dissociation (MAD) of doubly and triply charged phosphorylated tau peptides. Cook SL; Zimmermann CM; Singer D; Fedorova M; Hoffmann R; Jackson GP J Mass Spectrom; 2012 Jun; 47(6):786-94. PubMed ID: 22707171 [TBL] [Abstract][Full Text] [Related]
3. Electron capture dissociation mass spectrometry of tyrosine nitrated peptides. Jones AW; Mikhailov VA; Iniesta J; Cooper HJ J Am Soc Mass Spectrom; 2010 Feb; 21(2):268-77. PubMed ID: 19931467 [TBL] [Abstract][Full Text] [Related]
4. Top-down mass analysis of protein tyrosine nitration: comparison of electron capture dissociation with "slow-heating" tandem mass spectrometry methods. Mikhailov VA; Iniesta J; Cooper HJ Anal Chem; 2010 Sep; 82(17):7283-92. PubMed ID: 20677807 [TBL] [Abstract][Full Text] [Related]
5. The radical ion chemistry of S-nitrosylated peptides. Jones AW; Winn PJ; Cooper HJ J Am Soc Mass Spectrom; 2012 Dec; 23(12):2063-74. PubMed ID: 23055078 [TBL] [Abstract][Full Text] [Related]
6. Metastable atom-activated dissociation mass spectrometry of phosphorylated and sulfonated peptides in negative ion mode. Cook SL; Jackson GP J Am Soc Mass Spectrom; 2011 Jun; 22(6):1088-99. PubMed ID: 21953050 [TBL] [Abstract][Full Text] [Related]
7. w-Type ions formed by electron transfer dissociation of Cys-containing peptides investigated by infrared ion spectroscopy. Kempkes LJM; Martens J; Berden G; Oomens J J Mass Spectrom; 2018 Dec; 53(12):1207-1213. PubMed ID: 30281881 [TBL] [Abstract][Full Text] [Related]
8. Conversion of 3-nitrotyrosine to 3-aminotyrosine residues facilitates mapping of tyrosine nitration in proteins by electrospray ionization-tandem mass spectrometry using electron capture dissociation. Guo J; Prokai L J Mass Spectrom; 2012 Dec; 47(12):1601-11. PubMed ID: 23280749 [TBL] [Abstract][Full Text] [Related]
9. Quantification of post-translationally modified peptides of bovine alpha-crystallin using tandem mass tags and electron transfer dissociation. Viner RI; Zhang T; Second T; Zabrouskov V J Proteomics; 2009 Jul; 72(5):874-85. PubMed ID: 19245863 [TBL] [Abstract][Full Text] [Related]
10. On-line LC-MS approach combining collision-induced dissociation (CID), electron-transfer dissociation (ETD), and CID of an isolated charge-reduced species for the trace-level characterization of proteins with post-translational modifications. Wu SL; Hühmer AF; Hao Z; Karger BL J Proteome Res; 2007 Nov; 6(11):4230-44. PubMed ID: 17900180 [TBL] [Abstract][Full Text] [Related]
11. Metastable atom-activated dissociation mass spectrometry: leucine/isoleucine differentiation and ring cleavage of proline residues. Cook SL; Collin OL; Jackson GP J Mass Spectrom; 2009 Aug; 44(8):1211-23. PubMed ID: 19466707 [TBL] [Abstract][Full Text] [Related]
12. The utility of ETD mass spectrometry in proteomic analysis. Mikesh LM; Ueberheide B; Chi A; Coon JJ; Syka JE; Shabanowitz J; Hunt DF Biochim Biophys Acta; 2006 Dec; 1764(12):1811-22. PubMed ID: 17118725 [TBL] [Abstract][Full Text] [Related]
13. Characterization of O-sulfopeptides by negative ion mode tandem mass spectrometry: superior performance of negative ion electron capture dissociation. Hersberger KE; Håkansson K Anal Chem; 2012 Aug; 84(15):6370-7. PubMed ID: 22770115 [TBL] [Abstract][Full Text] [Related]
14. Investigation of the Mechanism of Electron Capture and Electron Transfer Dissociation of Peptides with a Covalently Attached Free Radical Hydrogen Atom Scavenger. Sohn CH; Yin S; Peng I; Loo JA; Beauchamp JL Int J Mass Spectrom; 2015 Nov; 390():49-55. PubMed ID: 27275130 [TBL] [Abstract][Full Text] [Related]
15. Multistage Mass Spectrometry of Phospholipids using Collision-Induced Dissociation (CID) and Metastable Atom-Activated Dissociation (MAD). Li P; Hoffmann WD; Jackson GP Int J Mass Spectrom; 2016 Jun; 403():1-7. PubMed ID: 27547107 [TBL] [Abstract][Full Text] [Related]
16. RADICAL-INDUCED FRAGMENTATION OF PHOSPHOLIPID CATIONS USING METASTABLE ATOM-ACTIVATED DISSOCIATION MASS SPECTROMETRY (MAD-MS). Deimler RE; Sander M; Jackson GP Int J Mass Spectrom; 2015 Nov; 390():178-186. PubMed ID: 26644782 [TBL] [Abstract][Full Text] [Related]
17. Improved sequencing of oxidized cysteine and methionine containing peptides using electron transfer dissociation. Srikanth R; Wilson J; Bridgewater JD; Numbers JR; Lim J; Olbris MR; Kettani A; Vachet RW J Am Soc Mass Spectrom; 2007 Aug; 18(8):1499-506. PubMed ID: 17583533 [TBL] [Abstract][Full Text] [Related]
18. Selective Gas-Phase Oxidation and Localization of Alkylated Cysteine Residues in Polypeptide Ions via Ion/Ion Chemistry. Pilo AL; Zhao F; McLuckey SA J Proteome Res; 2016 Sep; 15(9):3139-46. PubMed ID: 27476698 [TBL] [Abstract][Full Text] [Related]
19. Probing the mechanisms of electron capture dissociation mass spectrometry with nitrated peptides. Jones AW; Cooper HJ Phys Chem Chem Phys; 2010 Nov; 12(41):13394-9. PubMed ID: 20830387 [TBL] [Abstract][Full Text] [Related]
20. Elucidating the sequence of intact bioactive peptides by using electron capture dissociation and hot electron capture dissociation in a linear radio-frequency quadrupole ion trap. Satake H; Manri N; Kaneko A; Hirabayashi A; Hasegawa H; Hashimoto Y; Baba T; Sakamoto T; Masuda K Rapid Commun Mass Spectrom; 2013 Dec; 27(23):2710-6. PubMed ID: 24591032 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]