These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Heterologous expression of triterpene biosynthetic genes in yeast and subsequent metabolite identification through GC-MS. Fukushima EO; Seki H; Muranaka T Methods Mol Biol; 2014; 1153():235-43. PubMed ID: 24777802 [TBL] [Abstract][Full Text] [Related]
7. Site-specific genomic (SSG) and random domain-localized (RDL) mutagenesis in yeast. Gray M; Kupiec M; Honigberg SM BMC Biotechnol; 2004 Apr; 4():7. PubMed ID: 15090068 [TBL] [Abstract][Full Text] [Related]
8. RADOM, an efficient in vivo method for assembling designed DNA fragments up to 10 kb long in Saccharomyces cerevisiae. Lin Q; Jia B; Mitchell LA; Luo J; Yang K; Zeller KI; Zhang W; Xu Z; Stracquadanio G; Bader JS; Boeke JD; Yuan YJ ACS Synth Biol; 2015 Mar; 4(3):213-20. PubMed ID: 24895839 [TBL] [Abstract][Full Text] [Related]
9. Manipulating the yeast genome: deletion, mutation, and tagging by PCR. Gardner JM; Jaspersen SL Methods Mol Biol; 2014; 1205():45-78. PubMed ID: 25213239 [TBL] [Abstract][Full Text] [Related]
10. Two-step method for constructing unmarked insertions, deletions and allele substitutions in the yeast genome. Gray M; Piccirillo S; Honigberg SM FEMS Microbiol Lett; 2005 Jul; 248(1):31-6. PubMed ID: 15953696 [TBL] [Abstract][Full Text] [Related]
11. Introduction of the early pathway to taxol biosynthesis in yeast by means of biosynthetic gene cluster construction using SOE-PCR and homologous recombination. Dahm P; Jennewein S Methods Mol Biol; 2010; 643():145-63. PubMed ID: 20552450 [TBL] [Abstract][Full Text] [Related]
13. Genomic yeast DNA clone banks. Construction and gene isolation. Bignell GR; Evans IH Methods Mol Biol; 1996; 53():155-87. PubMed ID: 8924978 [No Abstract] [Full Text] [Related]
14. New constructs and strategies for efficient PCR-based gene manipulations in yeast. Puig O; Rutz B; Luukkonen BG; Kandels-Lewis S; Bragado-Nilsson E; Séraphin B Yeast; 1998 Sep; 14(12):1139-46. PubMed ID: 9778799 [TBL] [Abstract][Full Text] [Related]
15. Construction of integrative plasmids suitable for genetic modification of industrial strains of Saccharomyces cerevisiae. Leite FC; Dos Anjos RS; Basilio AC; Leal GF; Simões DA; de Morais MA Plasmid; 2013 Jan; 69(1):114-7. PubMed ID: 23041652 [TBL] [Abstract][Full Text] [Related]
16. Rewriting the blueprint of life by synthetic genomics and genome engineering. Annaluru N; Ramalingam S; Chandrasegaran S Genome Biol; 2015 Jun; 16(1):125. PubMed ID: 26076868 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides. Gibson DG Nucleic Acids Res; 2009 Nov; 37(20):6984-90. PubMed ID: 19745056 [TBL] [Abstract][Full Text] [Related]
18. Construction of a large plasmid lacking linearizing single restriction sites by simultaneous in vivo recombination and plasmid shuffling in yeast. Miletti KE; Leibowitz MJ Yeast; 2000 Dec; 16(16):1527-34. PubMed ID: 11113975 [TBL] [Abstract][Full Text] [Related]
19. A novel system of genetic transformation allows multiple integrations of a desired gene in Saccharomyces cerevisiae chromosomes. Guerra OG; Rubio IG; da Silva Filho CG; Bertoni RA; Dos Santos Govea RC; Vicente EJ J Microbiol Methods; 2006 Dec; 67(3):437-45. PubMed ID: 16831478 [TBL] [Abstract][Full Text] [Related]
20. Yeast (Saccharomyces cerevisiae). Hooykaas PJ; den Dulk-Ras A; Bundock P; Soltani J; van Attikum H; van Heusden GP Methods Mol Biol; 2006; 344():465-73. PubMed ID: 17033086 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]