These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 21472907)

  • 1. Peptide bond formation on the ribosome: the role of the 2'-OH group on the terminal adenosine of peptidyl-tRNA and of the length of nascent peptide chain.
    Huang Y; Sprinzl M
    Angew Chem Int Ed Engl; 2011 Aug; 50(32):7287-9. PubMed ID: 21472907
    [No Abstract]   [Full Text] [Related]  

  • 2. Peptide-bond synthesis on the ribosome: no free vicinal hydroxy group required on the terminal ribose residue of peptidyl-tRNA.
    Koch M; Huang Y; Sprinzl M
    Angew Chem Int Ed Engl; 2008; 47(38):7242-5. PubMed ID: 18688896
    [No Abstract]   [Full Text] [Related]  

  • 3. Transfer RNA binding to 80S ribosomes from yeast: evidence for three sites.
    Triana F; Nierhaus KH; Chakraburtty K
    Biochem Mol Biol Int; 1994 Aug; 33(5):909-15. PubMed ID: 7987260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ribosome release factor RF4 and termination factor RF3 are involved in dissociation of peptidyl-tRNA from the ribosome.
    Heurgué-Hamard V; Karimi R; Mora L; MacDougall J; Leboeuf C; Grentzmann G; Ehrenberg M; Buckingham RH
    EMBO J; 1998 Feb; 17(3):808-16. PubMed ID: 9451005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermediate states in the movement of transfer RNA in the ribosome.
    Moazed D; Noller HF
    Nature; 1989 Nov; 342(6246):142-8. PubMed ID: 2682263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of ribosomal peptide bond formation.
    Berg JM; Lorsch JR
    Science; 2001 Jan; 291(5502):203. PubMed ID: 11406869
    [No Abstract]   [Full Text] [Related]  

  • 7. 2'/3'-O-peptidyl adenosine as a general base catalyst of its own external peptidyl transfer: implications for the ribosome catalytic mechanism.
    Changalov MM; Ivanova GD; Rangelov MA; Acharya P; Acharya S; Minakawa N; Földesi A; Stoineva IB; Yomtova VM; Roussev CD; Matsuda A; Chattopadhyaya J; Petkov DD
    Chembiochem; 2005 Jun; 6(6):992-6. PubMed ID: 15812855
    [No Abstract]   [Full Text] [Related]  

  • 8. Changes produced by bound tryptophan in the ribosome peptidyl transferase center in response to TnaC, a nascent leader peptide.
    Cruz-Vera LR; Gong M; Yanofsky C
    Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3598-603. PubMed ID: 16505360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein-based peptide-bond formation by aminoacyl-tRNA protein transferase.
    Watanabe K; Toh Y; Suto K; Shimizu Y; Oka N; Wada T; Tomita K
    Nature; 2007 Oct; 449(7164):867-71. PubMed ID: 17891155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and synthesis of substrates for model ribosomal reactions.
    Bayryamov SG; Vassilev NG; Rangelov MA; Mladjova AP; Petkov DD
    Protein Pept Lett; 2009; 16(4):392-401. PubMed ID: 19356136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate-assisted catalysis of peptide bond formation by the ribosome.
    Weinger JS; Parnell KM; Dorner S; Green R; Strobel SA
    Nat Struct Mol Biol; 2004 Nov; 11(11):1101-6. PubMed ID: 15475967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interplay between the ribosomal tunnel, nascent chain, and macrolides influences drug inhibition.
    Starosta AL; Karpenko VV; Shishkina AV; Mikolajka A; Sumbatyan NV; Schluenzen F; Korshunova GA; Bogdanov AA; Wilson DN
    Chem Biol; 2010 May; 17(5):504-14. PubMed ID: 20534348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional interaction between release factor one and P-site peptidyl-tRNA on the ribosome.
    Zhang S; Rydén-Aulin M; Isaksson LA
    J Mol Biol; 1996 Aug; 261(2):98-107. PubMed ID: 8757279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptide bond formation does not involve acid-base catalysis by ribosomal residues.
    Bieling P; Beringer M; Adio S; Rodnina MV
    Nat Struct Mol Biol; 2006 May; 13(5):423-8. PubMed ID: 16648860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Role for the 2' OH of peptidyl-tRNA substrate in peptide release on the ribosome revealed through RF-mediated rescue.
    Shaw JJ; Trobro S; He SL; Åqvist J; Green R
    Chem Biol; 2012 Aug; 19(8):983-93. PubMed ID: 22921065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A possible mechanism of peptide bond formation on ribosome without mediation of peptidyl transferase.
    Das GK; Bhattacharyya D; Burma DP
    J Theor Biol; 1999 Sep; 200(2):193-205. PubMed ID: 10504285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A proton wire to couple aminoacyl-tRNA accommodation and peptide-bond formation on the ribosome.
    Polikanov YS; Steitz TA; Innis CA
    Nat Struct Mol Biol; 2014 Sep; 21(9):787-93. PubMed ID: 25132179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Features of ribosome-peptidyl-tRNA interactions essential for tryptophan induction of tna operon expression.
    Cruz-Vera LR; Rajagopal S; Squires C; Yanofsky C
    Mol Cell; 2005 Aug; 19(3):333-43. PubMed ID: 16061180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ribosomal grip of the peptidyl-tRNA is critical for reading frame maintenance.
    Näsvall SJ; Nilsson K; Björk GR
    J Mol Biol; 2009 Jan; 385(2):350-67. PubMed ID: 19013179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model for the role of isomerization in nascent peptide movement through the ribosomal tunnel.
    Agmon IC
    FASEB J; 2012 Jun; 26(6):2277-82. PubMed ID: 22389440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.