BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 21473270)

  • 21. Pesticides in surface water runoff in south-eastern New York State, USA: seasonal and stormflow effects on concentrations.
    Phillips PJ; Bode RW
    Pest Manag Sci; 2004 Jun; 60(6):531-43. PubMed ID: 15198325
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Model development for nutrient loading estimates from paddy rice fields in Korea.
    Jeon JH; Yoon CG; Ham JH; Jung KW
    J Environ Sci Health B; 2004; 39(5-6):845-60. PubMed ID: 15620091
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Measuring and predicting environmental concentrations of pesticides in air after application to paddy water systems.
    Ferrari F; Karpouzas DG; Trevisan M; Capri E
    Environ Sci Technol; 2005 May; 39(9):2968-75. PubMed ID: 15926540
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Runoff characteristics of pesticides from paddy fields and reduction of risk to the aquatic environment.
    Ebise S; Inoue T
    Water Sci Technol; 2002; 45(9):127-31. PubMed ID: 12079094
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimation of pesticide runoff from paddy fields to rural rivers.
    Numabe A; Nagahora S
    Water Sci Technol; 2006; 53(2):139-46. PubMed ID: 16594332
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Variation of 4,5,6,7-tetrachlorophthalide in water after aerial application to rice cultivation area.
    Maeda T; Iwashita M; Hori T; Asada T; Oikawa K; Kawata K
    Bull Environ Contam Toxicol; 2008 May; 80(5):399-402. PubMed ID: 18500665
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use pattern of pesticides and their predicted mobility into shallow groundwater and surface water bodies of paddy lands in Mahaweli river basin in Sri Lanka.
    Aravinna P; Priyantha N; Pitawala A; Yatigammana SK
    J Environ Sci Health B; 2017 Jan; 52(1):37-47. PubMed ID: 27754814
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of uncertainties in agricultural working schedules and Monte-Carlo evaluation of the model input in basin-scale runoff model analysis of herbicides.
    Matsui Y; Inoue T; Matsushita T; Yamada T; Yamamoto M; Sumigama Y
    Water Sci Technol; 2005; 51(3-4):329-37. PubMed ID: 15850206
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Trace analysis of pesticides in paddy field water by direct injection using liquid chromatography-quadrupole-linear ion trap-mass spectrometry.
    Pareja L; Martínez-Bueno MJ; Cesio V; Heinzen H; Fernández-Alba AR
    J Chromatogr A; 2011 Jul; 1218(30):4790-8. PubMed ID: 21397903
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of the RICEWQ-VADOFT model for simulating the environmental fate of pretilachlor in rice paddies.
    Karpouzas DG; Ferrero A; Vidotto F; Capri E
    Environ Toxicol Chem; 2005 Apr; 24(4):1007-17. PubMed ID: 15839578
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Behavior of bromobutide in paddy water and soil after application.
    Morohashi M; Nagasawa S; Enya N; Suzuki K; Kose T; Kawata K
    Bull Environ Contam Toxicol; 2012 Apr; 88(4):521-5. PubMed ID: 22297629
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pesticide residues in coastal waters affected by rice paddy effluents temporarily stored in a wastewater reservoir in southern Japan.
    Añasco NC; Koyama J; Uno S
    Arch Environ Contam Toxicol; 2010 Feb; 58(2):352-60. PubMed ID: 19609592
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mass balance analysis and water quality model development for loading estimates from paddy fields.
    Jeon JH; Yoon CG; Ham JH; Hwang HS
    Water Sci Technol; 2005; 51(3-4):99-105. PubMed ID: 15850179
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT.
    Luo Y; Zhang M
    Environ Pollut; 2009 Dec; 157(12):3370-8. PubMed ID: 19616876
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A pesticide runoff model for simulating runoff losses of pesticides from agricultural lands.
    Li YR; Huang GH; Li YF; Struger J; Fischer JD
    Water Sci Technol; 2003; 47(1):33-40. PubMed ID: 12578171
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inverse modeling of laboratory experiment to assess parameter transferability of pesticide environmental fate into outdoor experiments under paddy test systems.
    Kondo K; Wakasone Y; Iijima K; Ohyama K
    Pest Manag Sci; 2020 Aug; 76(8):2768-2780. PubMed ID: 32202059
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simulating pesticides in ditches to assess ecological risk (SPIDER): II. Benchmarking for the drainage model.
    Renaud FG; Brown CD
    Sci Total Environ; 2008 May; 394(1):124-33. PubMed ID: 18280538
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting pesticide concentrations in river water with a hydrologically calibrated basin-scale runoff model.
    Matsui Y; Itoshiro S; Buma M; Matsushita T; Hosogoe K; Yuasa A; Shinoda S; Inoue T
    Water Sci Technol; 2002; 45(9):141-8. PubMed ID: 12079096
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Behavior of herbicide pyrazolynate and its hydrolysate in paddy fields after application.
    Kubo T; Ohno M; Nagasawa S; Kose T; Kawata K
    Bull Environ Contam Toxicol; 2012 Nov; 89(5):985-9. PubMed ID: 22914901
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inverse analysis to estimate site-specific parameters of a mathematical model for simulating pesticide dissipations in paddy test systems.
    Kondo K; Wakasone Y; Iijima K; Ohyama K
    Pest Manag Sci; 2019 Jun; 75(6):1594-1605. PubMed ID: 30471196
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.