BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 21473653)

  • 1. Stability of heterochiral hybrid membrane made of bacterial sn-G3P lipids and archaeal sn-G1P lipids.
    Shimada H; Yamagishi A
    Biochemistry; 2011 May; 50(19):4114-20. PubMed ID: 21473653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Birth of Archaeal Cells: Molecular Phylogenetic Analyses of G1P Dehydrogenase, G3P Dehydrogenases, and Glycerol Kinase Suggest Derived Features of Archaeal Membranes Having G1P Polar Lipids.
    Yokobori SI; Nakajima Y; Akanuma S; Yamagishi A
    Archaea; 2016; 2016():1802675. PubMed ID: 27774041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Converting
    Caforio A; Siliakus MF; Exterkate M; Jain S; Jumde VR; Andringa RLH; Kengen SWM; Minnaard AJ; Driessen AJM; van der Oost J
    Proc Natl Acad Sci U S A; 2018 Apr; 115(14):3704-3709. PubMed ID: 29555770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bridging the membrane lipid divide: bacteria of the FCB group superphylum have the potential to synthesize archaeal ether lipids.
    Villanueva L; von Meijenfeldt FAB; Westbye AB; Yadav S; Hopmans EC; Dutilh BE; Damsté JSS
    ISME J; 2021 Jan; 15(1):168-182. PubMed ID: 32929208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis of Hybrid Neutral Lipids with Archaeal and Eukaryotic Characteristics in Engineered Saccharomyces cerevisiae.
    Zhang J; Li T; Hong Z; Ma C; Fang X; Zheng F; Teng W; Zhang C; Si T
    Angew Chem Int Ed Engl; 2023 Jan; 62(4):e202214344. PubMed ID: 36424352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering E. coli to Have a Hybrid Archaeal/Bacterial Membrane.
    Villanueva L
    Trends Microbiol; 2018 Jul; 26(7):559-560. PubMed ID: 29789226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogenomic analysis of lipid biosynthetic genes of Archaea shed light on the 'lipid divide'.
    Villanueva L; Schouten S; Damsté JS
    Environ Microbiol; 2017 Jan; 19(1):54-69. PubMed ID: 27112361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ancestral lipid biosynthesis and early membrane evolution.
    Peretó J; López-García P; Moreira D
    Trends Biochem Sci; 2004 Sep; 29(9):469-77. PubMed ID: 15337120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Headgroups on Small-Ion Permeability across Archaea-Inspired Tetraether Lipid Membranes.
    Koyanagi T; Leriche G; Yep A; Onofrei D; Holland GP; Mayer M; Yang J
    Chemistry; 2016 Jun; 22(24):8074-7. PubMed ID: 27142341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits.
    Weijers JW; Schouten S; Hopmans EC; Geenevasen JA; David OR; Coleman JM; Pancost RD; Sinninghe Damsté JS
    Environ Microbiol; 2006 Apr; 8(4):648-57. PubMed ID: 16584476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of archaeal membrane ether lipids.
    Jain S; Caforio A; Driessen AJ
    Front Microbiol; 2014; 5():641. PubMed ID: 25505460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chiral analysis of glycerol phosphates - can bacteria biosynthesize heterochiral phospholipid membranes?
    Palyzová A; Guschina IA; Řezanka T
    J Chromatogr A; 2022 Aug; 1676():463267. PubMed ID: 35767906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of lipid chain unsaturation and headgroup type on molecular interactions between paclitaxel and phospholipid within model biomembrane.
    Zhao L; Feng SS
    J Colloid Interface Sci; 2005 May; 285(1):326-35. PubMed ID: 15797430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of ether-type polar lipids in archaea and evolutionary considerations.
    Koga Y; Morii H
    Microbiol Mol Biol Rev; 2007 Mar; 71(1):97-120. PubMed ID: 17347520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liposomes containing lipids from Sulfolobus islandicus withstand intestinal bile salts: An approach for oral drug delivery?
    Jensen SM; Christensen CJ; Petersen JM; Treusch AH; Brandl M
    Int J Pharm; 2015 Sep; 493(1-2):63-9. PubMed ID: 26192627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Titratable Amphiphiles in Lipid Membranes by Fluorescence Spectroscopy.
    Pierrat P; Lebeau L
    Langmuir; 2015 Nov; 31(45):12362-71. PubMed ID: 26507074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural characterization of liposomes made of diether archaeal lipids and dipalmitoyl-L-α-phosphatidylcholine.
    Gmajner D; Grabnar PA; Znidarič MT; Strus J; Sentjurc M; Ulrih NP
    Biophys Chem; 2011 Oct; 158(2-3):150-6. PubMed ID: 21763060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid membrane expansion and micelle formation by polymer-grafted lipids: scaling with polymer length studied by spin-label electron spin resonance.
    Montesano G; Bartucci R; Belsito S; Marsh D; Sportelli L
    Biophys J; 2001 Mar; 80(3):1372-83. PubMed ID: 11222298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of an artificial biosynthetic pathway for hyperextended archaeal membrane lipids in the bacterium
    Yoshida R; Hemmi H
    Synth Biol (Oxf); 2020; 5(1):ysaa018. PubMed ID: 33263085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural characterization of ether lipids from the archaeon Sulfolobus islandicus by high-resolution shotgun lipidomics.
    Jensen SM; Brandl M; Treusch AH; Ejsing CS
    J Mass Spectrom; 2015 Mar; 50(3):476-87. PubMed ID: 25800184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.