BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 21473849)

  • 1. Immune suppression of the echinoderm Asterias rubens (L.) following long-term ocean acidification.
    Hernroth B; Baden S; Thorndyke M; Dupont S
    Aquat Toxicol; 2011 Jun; 103(3-4):222-4. PubMed ID: 21473849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manganese effects on haematopoietic cells and circulating coelomocytes of Asterias rubens (Linnaeus).
    Oweson C; Sköld H; Pinsino A; Matranga V; Hernroth B
    Aquat Toxicol; 2008 Aug; 89(2):75-81. PubMed ID: 18639346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term environmental exposure to metals (Cu, Cd, Pb, Zn) activates the immune cell stress response in the common European sea star (Asterias rubens).
    Matranga V; Pinsino A; Randazzo D; Giallongo A; Dubois P
    Mar Environ Res; 2012 May; 76():122-7. PubMed ID: 22000270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of manganese and hypoxia on coelomocyte renewal in the echinoderm, Asterias rubens (L.).
    Oweson C; Li C; Söderhäll I; Hernroth B
    Aquat Toxicol; 2010 Oct; 100(1):84-90. PubMed ID: 20678812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resource allocation and extracellular acid-base status in the sea urchin Strongylocentrotus droebachiensis in response to CO₂ induced seawater acidification.
    Stumpp M; Trübenbach K; Brennecke D; Hu MY; Melzner F
    Aquat Toxicol; 2012 Apr; 110-111():194-207. PubMed ID: 22343465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trans-life cycle acclimation to experimental ocean acidification affects gastric pH homeostasis and larval recruitment in the sea star Asterias rubens.
    Hu MY; Lein E; Bleich M; Melzner F; Stumpp M
    Acta Physiol (Oxf); 2018 Oct; 224(2):e13075. PubMed ID: 29660255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Buffer capacity of the coelomic fluid in echinoderms.
    Collard M; Laitat K; Moulin L; Catarino AI; Grosjean P; Dubois P
    Comp Biochem Physiol A Mol Integr Physiol; 2013 Sep; 166(1):199-206. PubMed ID: 23752123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of ocean acidification on the embryos and larvae of red king crab, Paralithodes camtschaticus.
    Christopher Long W; Swiney KM; Foy RJ
    Mar Pollut Bull; 2013 Apr; 69(1-2):38-47. PubMed ID: 23434384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunomodulation by the interactive effects of cadmium and hypercapnia in marine bivalves Crassostrea virginica and Mercenaria mercenaria.
    Ivanina AV; Hawkins C; Sokolova IM
    Fish Shellfish Immunol; 2014 Apr; 37(2):299-312. PubMed ID: 24594010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benthic foraminifera show some resilience to ocean acidification in the northern Gulf of California, Mexico.
    Pettit LR; Hart MB; Medina-Sánchez AN; Smart CW; Rodolfo-Metalpa R; Hall-Spencer JM; Prol-Ledesma RM
    Mar Pollut Bull; 2013 Aug; 73(2):452-62. PubMed ID: 23473095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coelomocytes and post-traumatic response in the common sea star Asterias rubens.
    Pinsino A; Thorndyke MC; Matranga V
    Cell Stress Chaperones; 2007; 12(4):331-41. PubMed ID: 18229452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consequences of a simulated rapid ocean acidification event for benthic ecosystem processes and functions.
    Murray F; Widdicombe S; McNeill CL; Solan M
    Mar Pollut Bull; 2013 Aug; 73(2):435-42. PubMed ID: 23219529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of elevated levels of CO2 on animal mediated ecosystem function: the modification of sediment nutrient fluxes by burrowing urchins.
    Widdicombe S; Beesley A; Berge JA; Dashfield SL; McNeill CL; Needham HR; Øxnevad S
    Mar Pollut Bull; 2013 Aug; 73(2):416-27. PubMed ID: 23218873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Swimming performance in Atlantic Cod (Gadus morhua) following long-term (4-12 months) acclimation to elevated seawater P(CO2).
    Melzner F; Göbel S; Langenbuch M; Gutowska MA; Pörtner HO; Lucassen M
    Aquat Toxicol; 2009 Apr; 92(1):30-7. PubMed ID: 19223084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Community-level response of coastal microbial biofilms to ocean acidification in a natural carbon dioxide vent ecosystem.
    Lidbury I; Johnson V; Hall-Spencer JM; Munn CB; Cunliffe M
    Mar Pollut Bull; 2012 May; 64(5):1063-6. PubMed ID: 22414852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of near-future ocean acidification on echinoderms.
    Dupont S; Ortega-Martínez O; Thorndyke M
    Ecotoxicology; 2010 Mar; 19(3):449-62. PubMed ID: 20130988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulated climate change causes immune suppression and protein damage in the crustacean Nephrops norvegicus.
    Hernroth B; Sköld HN; Wiklander K; Jutfelt F; Baden S
    Fish Shellfish Immunol; 2012 Nov; 33(5):1095-101. PubMed ID: 22974540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linking genotoxic responses with cytotoxic and behavioural or physiological consequences: differential sensitivity of echinoderms (Asterias rubens) and marine molluscs (Mytilus edulis).
    Canty MN; Hutchinson TH; Brown RJ; Jones MB; Jha AN
    Aquat Toxicol; 2009 Aug; 94(1):68-76. PubMed ID: 19564054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coplanar and non-coplanar congener-specificity of PCB bioaccumulation and immunotoxicity in sea stars.
    Danis B; Cattini C; Teyssié JL; Villeneuve JP; Fowler SW; Warnau M
    Aquat Toxicol; 2006 Aug; 79(2):105-13. PubMed ID: 16837075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The toxicological interaction between ocean acidity and metals in coastal meiobenthic copepods.
    Pascal PY; Fleeger JW; Galvez F; Carman KR
    Mar Pollut Bull; 2010 Dec; 60(12):2201-8. PubMed ID: 20875652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.