BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 214742)

  • 1. Calcium and sodium transport processes in patients with cystic fibrosis. I. A specific decrease in Mg2+-dependent, Ca2+-adenosine triphosphatase activity in erythrocyte membranes from cystic fibrosis patients.
    Katz S
    Pediatr Res; 1978 Nov; 12(11):1033-8. PubMed ID: 214742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium and sodium transport processes in patients with cystic fibrosis 2. Mg2+- dependent, Ca2+ ATPase activity in fibroblast membrane preparations from cystic fibrosis patients and controls.
    Katz S
    Res Commun Chem Pathol Pharmacol; 1978 Mar; 19(3):491-503. PubMed ID: 148720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium-ATPase activity in cystic fibrosis erythrocyte membranes: decreased activity in patients with pancreatic insufficiency.
    Dearborn DG; Wityk RJ; Johnson LR; Poncz L; Stern RC
    Pediatr Res; 1984 Sep; 18(9):890-5. PubMed ID: 6091022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and characterization of erythrocyte membrane Ca2+-ATPase in cystic fibrosis.
    Bridges MA; Katz S
    Pediatr Res; 1986 Apr; 20(4):356-60. PubMed ID: 2939393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Erythrocyte calcium-stimulated, magnesium-activated adenosine 5'-triphosphatase activity in essential hypertension.
    Adeoya AS; Bing RF; Norman RI
    J Hypertens; 1992 Jul; 10(7):651-6. PubMed ID: 1321192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The effect of membrane-bound calcium on the activity of adenosine triphosphatase from erythrocytes and erythrocyte permeability for monovalent cations].
    Orlov SN; Shevchenko AS
    Biokhimiia; 1978 Feb; 43(2):208-15. PubMed ID: 148300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Erythrocyte and plasma Ca2+, Mg2+ and cell membrane adenosine triphosphatase activity in patients with essential hypertension.
    Fu Y; Wang S; Lu Z; Li H; Li S
    Chin Med J (Engl); 1998 Feb; 111(2):147-9. PubMed ID: 10374376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probe of the (Ca2+ + Mg2+)-ATPase in erythrocyte membranes of cystic fibrosis patients.
    Hunsinger RN; Cheung HC
    Clin Chim Acta; 1986 Apr; 156(2):165-77. PubMed ID: 2940033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Erythrocyte cytosolic free Ca2+ and plasma membrane Ca2+-ATPase activity in cystic fibrosis.
    Waller RL; Johnson LR; Brattin WJ; Dearborn DG
    Cell Calcium; 1985 Jun; 6(3):245-64. PubMed ID: 3160470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alterations of Na+-K+-ATPase, Ca2+-ATPase, and Mg2+-ATPase activities in erythrocyte, muscle, and liver of traumatic and septic patients.
    Liaw KY; Kuo LL; Chen CC; Lin-Shiau SY
    Circ Shock; 1987; 22(3):195-203. PubMed ID: 3040290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced calmodulin-dependent (Ca2+ + Mg2+)-ATPase of hypothyroid rat erythrocyte membranes.
    Goswami A; Rosenberg IN
    Endocrinology; 1981 Mar; 108(3):1105-8. PubMed ID: 6257496
    [No Abstract]   [Full Text] [Related]  

  • 12. Investigation of (Ca2+ + Mg2+)-ATPase phosphoprotein formation in erythrocyte membranes of patients with cystic fibrosis.
    Allen BG; Bridges M; Roufogalis BD; Katz S
    Cell Calcium; 1986 Jun; 7(3):161-8. PubMed ID: 2941149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of (Mg2 + Ca2+)-ATPase of erythrocyte membranes prepared by different procedures: influence of Mg2+, Ca2+, ATP, and protein activator.
    Katz S; Roufogalis BD; Landman AD; Ho L
    J Supramol Struct; 1979; 10(2):215-25. PubMed ID: 156819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abnormal red-cell calcium pump in patients with idiopathic hypercalciuria.
    Bianchi G; Vezzoli G; Cusi D; Cova T; Elli A; Soldati L; Tripodi G; Surian M; Ottaviano E; Rigatti P
    N Engl J Med; 1988 Oct; 319(14):897-901. PubMed ID: 2971139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Erythrocyte membrane ATPase activity of G6PD-deficient individuals and the effect of primaquine metabolite(s) on membrane ATPase enzymes.
    Akoğlu T; Ozdoğu H; Erdoğan R; Ozer FL
    J Trop Med Hyg; 1984 Oct; 87(5):219-24. PubMed ID: 6152296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activator-associated Ca2+-ATPase in erythrocyte membranes from cystic fibrosis patients.
    Foder B; Scharff O; Tønnesen P
    Clin Chim Acta; 1980 Jun; 104(2):187-93. PubMed ID: 6446422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification, characterization, and reconstitution of the Ca2+-transport system (high-affinity Ca2+, Mg2+-ATPase) of the human erythrocyte membrane.
    Gietzen K; Konrad R; Tejcka M; Fleischer S; Wolf HU
    Acta Biol Med Ger; 1981; 40(4-5):443-56. PubMed ID: 6118989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capsaicin-induced activation of erythrocyte membrane sodium/potassium and calcium adenosine triphosphatases.
    Rizvi SI; Luqman S
    Cell Mol Biol Lett; 2003; 8(4):919-25. PubMed ID: 14668915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP utilizing reactions of human erythrocyte membranes and the influence of modulator proteins.
    Maretzki D; Klatt D; Reimann B; Rapoport S
    Acta Biol Med Ger; 1981; 40(4-5):479-86. PubMed ID: 6118991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular calcium homeostasis in Leishmania mexicana. Identification and characterization of a plasma membrane calmodulin-dependent Ca(2+)-ATPase.
    Benaim G; Cervino V; Hermoso T; Felibert P; Laurentin A
    Biol Res; 1993; 26(1-2):141-50. PubMed ID: 7670527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.