BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 21474226)

  • 1. Reliability of intraoperative navigation in restoring normal orbital dimensions.
    Markiewicz MR; Dierks EJ; Potter BE; Bell RB
    J Oral Maxillofac Surg; 2011 Nov; 69(11):2833-40. PubMed ID: 21474226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does intraoperative navigation restore orbital dimensions in traumatic and post-ablative defects?
    Markiewicz MR; Dierks EJ; Bell RB
    J Craniomaxillofac Surg; 2012 Feb; 40(2):142-8. PubMed ID: 21493082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer-assisted planning, stereolithographic modeling, and intraoperative navigation for complex orbital reconstruction: a descriptive study in a preliminary cohort.
    Bell RB; Markiewicz MR
    J Oral Maxillofac Surg; 2009 Dec; 67(12):2559-70. PubMed ID: 19925972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Virtual surgery simulation in orbital wall reconstruction: integration of surgical navigation and stereolithographic models.
    Novelli G; Tonellini G; Mazzoleni F; Bozzetti A; Sozzi D
    J Craniomaxillofac Surg; 2014 Dec; 42(8):2025-34. PubMed ID: 25458348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Navigation-guided reduction and orbital floor reconstruction in the treatment of zygomatic-orbital-maxillary complex fractures.
    Yu H; Shen G; Wang X; Zhang S
    J Oral Maxillofac Surg; 2010 Jan; 68(1):28-34. PubMed ID: 20006151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orbitozygomatic fractures with enophthalmos: analysis of 64 cases treated late.
    He D; Li Z; Shi W; Sun Y; Zhu H; Lin M; Shen G; Fan X
    J Oral Maxillofac Surg; 2012 Mar; 70(3):562-76. PubMed ID: 21752509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Digital surgical templates for managing high-energy zygomaticomaxillary complex injuries associated with orbital volume change: a quantitative assessment.
    Liu XZ; Shu DL; Ran W; Guo B; Liao X
    J Oral Maxillofac Surg; 2013 Oct; 71(10):1712-23. PubMed ID: 23911146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accuracy of globe-sparing orbital reconstruction using individually bent titanium mesh: A comparative study.
    Soh HY; Sun Q; Hu LH; Wang Y; Mao C; Peng X; Zhang WB
    J Plast Reconstr Aesthet Surg; 2022 Jun; 75(6):1971-1978. PubMed ID: 35168922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer-assisted secondary reconstruction of unilateral posttraumatic orbital deformity.
    Gellrich NC; Schramm A; Hammer B; Rojas S; Cufi D; Lagrèze W; Schmelzeisen R
    Plast Reconstr Surg; 2002 Nov; 110(6):1417-29. PubMed ID: 12409759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Personalized Reconstruction of Traumatic Orbital Defects Based on Precise Three-Dimensional Orientation and Measurements of the Globe.
    Huang L; Lin L; Wang Z; Shi B; Zhu X; Qiu Y; Huang Y; Yu X; Liao Y
    J Craniofac Surg; 2017 Jan; 28(1):172-179. PubMed ID: 27893559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immediate socket restoration after orbital trauma with globe loss: principles, timing, and our experience.
    Robiony M; Sbuelz M; Della Pietra L; Casadei M; Politi M
    J Craniofac Surg; 2014 Mar; 25(2):581-5. PubMed ID: 24621703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of intraoperative image-guided surgical techniques for reconstruction of orbital and zygomatic deformities.
    Frodel JL; Pacheco E
    Facial Plast Surg; 1999; 15(1):83-9. PubMed ID: 11816101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increasing the accuracy of orbital reconstruction with selective laser-melted patient-specific implants combined with intraoperative navigation.
    Rana M; Chui CH; Wagner M; Zimmerer R; Rana M; Gellrich NC
    J Oral Maxillofac Surg; 2015 Jun; 73(6):1113-8. PubMed ID: 25981837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A retrospective study to compare the treatment outcomes with and without surgical navigation for fracture of the orbital wall.
    Zong CL; Shi YL; Jia JQ; Ding MC; Chang SP; Lu JB; Chen YL; Tian L
    Chin J Traumatol; 2021 Feb; 24(1):11-17. PubMed ID: 33246880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The indication and application of computer-assisted navigation in oral and maxillofacial surgery-Shanghai's experience based on 104 cases.
    Yu H; Shen SG; Wang X; Zhang L; Zhang S
    J Craniomaxillofac Surg; 2013 Dec; 41(8):770-4. PubMed ID: 23462802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Navigation-Assisted Isolated Medial Orbital Wall Fracture Reconstruction Using an U-HA/PLLA Sheet via a Transcaruncular Approach.
    Dong QN; Karino M; Koike T; Ide T; Okuma S; Kaneko I; Osako R; Kanno T
    J Invest Surg; 2020 Aug; 33(7):644-652. PubMed ID: 30644798
    [No Abstract]   [Full Text] [Related]  

  • 17. Late Reconstruction of the Orbit With Patient-Specific Implants Using Computer-Aided Planning and Navigation.
    Baumann A; Sinko K; Dorner G
    J Oral Maxillofac Surg; 2015 Dec; 73(12 Suppl):S101-6. PubMed ID: 26608137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applications of 3D orbital computer-assisted surgery (CAS).
    Scolozzi P
    J Stomatol Oral Maxillofac Surg; 2017 Sep; 118(4):217-223. PubMed ID: 28642192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer-guided orbital reconstruction to improve outcomes.
    Bly RA; Chang SH; Cudejkova M; Liu JJ; Moe KS
    JAMA Facial Plast Surg; 2013 Mar; 15(2):113-20. PubMed ID: 23306963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer modeling and intraoperative navigation in maxillofacial surgery.
    Pham AM; Rafii AA; Metzger MC; Jamali A; Strong EB
    Otolaryngol Head Neck Surg; 2007 Oct; 137(4):624-31. PubMed ID: 17903581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.