These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 21474871)

  • 1. Hydrogen sensing in titanate nanotubes associated with modulation in protonic conduction.
    Alves DC; Goncalves AM; Campos LC; Avila ES; Lacerda RG; Ferlauto AS
    Nanotechnology; 2011 Jun; 22(23):235501. PubMed ID: 21474871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation, structure, and stability of titanate nanotubes and their proton conductivity.
    Thorne A; Kruth A; Tunstall D; Irvine JT; Zhou W
    J Phys Chem B; 2005 Mar; 109(12):5439-44. PubMed ID: 16851578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupled protonic and electronic conduction in the molecular conductor [2-(2-1H-Benzimidazolyl)-1H-benzimidazolium]-TCNQ.
    Akutagawa T; Hasegawa T; Nakamura T; Inabe T; Saito G
    Chemistry; 2002 Oct; 8(19):4402-11. PubMed ID: 12355528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanostructured ruthenium oxide electrodes via high-temperature molecular templating for use in electrochemical capacitors.
    Brumbach MT; Alam TM; Kotula PG; McKenzie BB; Bunker BC
    ACS Appl Mater Interfaces; 2010 Mar; 2(3):778-87. PubMed ID: 20356281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical behavior of thionine at titanate nanotubes-based modified electrode: a sensing platform for the detection of trichloroacetic acid.
    Dai H; Xu H; Wu X; Lin Y; Wei M; Chen G
    Talanta; 2010 Jun; 81(4-5):1461-6. PubMed ID: 20441923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large Seebeck coefficients of protonated titanate nanotubes for high-temperature thermoelectric conversion.
    Miao L; Tanemura S; Huang R; Liu CY; Huang CM; Xu G
    ACS Appl Mater Interfaces; 2010 Aug; 2(8):2355-9. PubMed ID: 20735107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of titanate nanotubes for dyes adsorptive removal from aqueous solution.
    Lee CK; Liu SS; Juang LC; Wang CC; Lyu MD; Hung SH
    J Hazard Mater; 2007 Sep; 148(3):756-60. PubMed ID: 17689860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneous photocatalysis of methylene blue over titanate nanotubes: effect of adsorption.
    Xiong L; Sun W; Yang Y; Chen C; Ni J
    J Colloid Interface Sci; 2011 Apr; 356(1):211-6. PubMed ID: 21288532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, characterization, and photocatalytic activities of titanate nanotubes surface-decorated by zinc oxide nanoparticles.
    Wang LS; Xiao MW; Huang XJ; Wu YD
    J Hazard Mater; 2009 Jan; 161(1):49-54. PubMed ID: 18456402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of synthesis temperature on the microstructures and basic dyes adsorption of titanate nanotubes.
    Lee CK; Lin KS; Wu CF; Lyu MD; Lo CC
    J Hazard Mater; 2008 Feb; 150(3):494-503. PubMed ID: 17561342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of ion-exchangeable titanate nanotubes.
    Sun X; Li Y
    Chemistry; 2003 May; 9(10):2229-38. PubMed ID: 12772297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pt surface modification of SnO2 nanorod arrays for CO and H2 sensors.
    Huang H; Ong CY; Guo J; White T; Tse MS; Tan OK
    Nanoscale; 2010 Jul; 2(7):1203-7. PubMed ID: 20648350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mixed protonic-electronic conduction and dielectric response in layered vanadyl phosphate nanocomposites.
    De S; Dey A; De SK
    J Chem Phys; 2006 Dec; 125(22):224704. PubMed ID: 17176151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plate, wire, mesh, microsphere, and microtube composed of sodium titanate nanotubes on a titanium metal template.
    Yada M; Inoue Y; Uota M; Torikai T; Watari T; Noda I; Hotokebuchi T
    Langmuir; 2007 Feb; 23(5):2815-23. PubMed ID: 17269803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and bifunctional gas sensing properties of porous In2O3-CeO2 binary oxide nanotubes.
    Xu L; Song H; Dong B; Wang Y; Chen J; Bai X
    Inorg Chem; 2010 Nov; 49(22):10590-7. PubMed ID: 20949903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct electrochemistry of myoglobin in titanate nanotubes film.
    Liu A; Wei M; Honma I; Zhou H
    Anal Chem; 2005 Dec; 77(24):8068-74. PubMed ID: 16351157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abnormal Optoelectric Properties of Two-Dimensional Protonic Ruthenium Oxide with a Hexagonal Structure.
    Park HJ; Lee K; Kim ID; Choi SJ; Ryu B
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22661-22668. PubMed ID: 29894624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of sodium content and calcination temperature on the morphology, structure and photocatalytic activity of nanotubular titanates.
    Lee CK; Wang CC; Lyu MD; Juang LC; Liu SS; Hung SH
    J Colloid Interface Sci; 2007 Dec; 316(2):562-9. PubMed ID: 17765912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications.
    Penza M; Rossi R; Alvisi M; Serra E
    Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase transformations in Sr0.8Ba0.2CoO2.5 brownmillerite: correlation between structure and transport properties.
    de la Calle C; Alonso JA; Aguadero A; Fernández-Díaz MT
    Dalton Trans; 2009 Jun; (21):4104-14. PubMed ID: 19452058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.