BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 21475617)

  • 1. Bayesian Parametric Accelerated Failure Time Spatial Model and its Application to Prostate Cancer.
    Zhang J; Lawson AB
    J Appl Stat; 2011 Mar; 38(2):591-603. PubMed ID: 21475617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial-temporal Bayesian accelerated failure time models for survival endpoints with applications to prostate cancer registry data.
    Wang M; Li Z; Lu J; Zhang L; Li Y; Zhang L
    BMC Med Res Methodol; 2024 Apr; 24(1):86. PubMed ID: 38589783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Bayesian normal mixture accelerated failure time spatial model and its application to prostate cancer.
    Wang S; Zhang J; Lawson AB
    Stat Methods Med Res; 2016 Apr; 25(2):793-806. PubMed ID: 23117407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Joint spatial survival modeling for the age at diagnosis and the vital outcome of prostate cancer.
    Zhou H; Lawson AB; Hebert JR; Slate EH; Hill EG
    Stat Med; 2008 Aug; 27(18):3612-28. PubMed ID: 18416442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially dependent polya tree modeling for survival data.
    Zhao L; Hanson TE
    Biometrics; 2011 Jun; 67(2):391-403. PubMed ID: 20731644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semiparametric Bayesian approaches to joinpoint regression for population-based cancer survival data.
    Ghosh P; Huang L; Yu B; Tiwari RC
    Comput Stat Data Anal; 2009 Oct; 53(12):4073-40. PubMed ID: 22210971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Comparison between Accelerated Failure-time and Cox Proportional Hazard Models in Analyzing the Survival of Gastric Cancer Patients.
    Zare A; Hosseini M; Mahmoodi M; Mohammad K; Zeraati H; Holakouie Naieni K
    Iran J Public Health; 2015 Aug; 44(8):1095-102. PubMed ID: 26587473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Racial/ethnic disparities in survival among men diagnosed with prostate cancer in Texas.
    White A; Coker AL; Du XL; Eggleston KS; Williams M
    Cancer; 2011 Mar; 117(5):1080-8. PubMed ID: 21351084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bayesian cure-rate survival model with spatially structured censoring.
    Onicescu G; Lawson AB
    Spat Stat; 2018 Dec; 28():352-364. PubMed ID: 32855903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial extended hazard model with application to prostate cancer survival.
    Li L; Hanson T; Zhang J
    Biometrics; 2015 Jun; 71(2):313-22. PubMed ID: 25521422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bayesian inference in time-varying additive hazards models with applications to disease mapping.
    Chernoukhov A; Hussein A; Nkurunziza S; Bandyopadhyay D
    Environmetrics; 2018; 29(5-6):. PubMed ID: 30510463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disparities by Race, Age, and Sex in the Improvement of Survival for Major Cancers: Results From the National Cancer Institute Surveillance, Epidemiology, and End Results (SEER) Program in the United States, 1990 to 2010.
    Zeng C; Wen W; Morgans AK; Pao W; Shu XO; Zheng W
    JAMA Oncol; 2015 Apr; 1(1):88-96. PubMed ID: 26182310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geographical Factors Associated With Health Disparities in Prostate Cancer.
    Gilbert SM; Pow-Sang JM; Xiao H
    Cancer Control; 2016 Oct; 23(4):401-408. PubMed ID: 27842329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lack of Racial Survival Differences in Metastatic Prostate Cancer in National Cancer Data Base (NCDB): A Different Finding Compared to Non-metastatic Disease.
    Vengaloor Thomas T; Gordy XZ; Lirette ST; Albert AA; Gordy DP; Vijayakumar S; Vijayakumar V
    Front Oncol; 2020; 10():533070. PubMed ID: 33072567
    [No Abstract]   [Full Text] [Related]  

  • 15. A Bayesian hierarchical modeling approach for studying the factors affecting the stage at diagnosis of prostate cancer.
    Zhou H; Lawson AB; Hebert JR; Slate EH; Hill EG
    Stat Med; 2008 Apr; 27(9):1468-89. PubMed ID: 17708511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age, period and cohort effects in Bayesian smoothing of spatial cancer survival with geoadditive models.
    Sauleau EA; Hennerfeind A; Buemi A; Held L
    Stat Med; 2007 Jan; 26(1):212-29. PubMed ID: 16526007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Spatial Survival Model in Presence of Competing Risks for Iranian Gastrointestinal Cancer Patients.
    Hesam S; Mahmoudi M; Rahimi Foroushani A; Yaseri M; Mansournia MA
    Asian Pac J Cancer Prev; 2018 Oct; 19(10):2947-2954. PubMed ID: 30362330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parametric models for spatially correlated survival data for individuals with multiple cancers.
    Diva U; Dey DK; Banerjee S
    Stat Med; 2008 May; 27(12):2127-44. PubMed ID: 18167633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geospatial analysis, web-based mapping and determinants of prostate cancer incidence in Georgia counties: evidence from the 2012-2016 SEER data.
    Aheto JMK; Utuama OA; Dagne GA
    BMC Cancer; 2021 May; 21(1):508. PubMed ID: 33957887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An analysis of hurricane impact across multiple cancers: Accessing spatio-temporal variation in cancer-specific survival with Hurricane Katrina and Louisiana SEER data.
    Huse E; Malone J; Ruesch E; Sulak T; Carroll R
    Health Place; 2020 May; 63():102326. PubMed ID: 32543419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.