BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 21475943)

  • 1. Rational design of biomimetic molecularly imprinted materials: theoretical and computational strategies for guiding nanoscale structured polymer development.
    Nicholls IA; Andersson HS; Golker K; Henschel H; Karlsson BC; Olsson GD; Rosengren AM; Shoravi S; Suriyanarayanan S; Wiklander JG; Wikman S
    Anal Bioanal Chem; 2011 Jun; 400(6):1771-86. PubMed ID: 21475943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical and computational strategies for rational molecularly imprinted polymer design.
    Nicholls IA; Andersson HS; Charlton C; Henschel H; Karlsson BC; Karlsson JG; O'Mahony J; Rosengren AM; Rosengren KJ; Wikman S
    Biosens Bioelectron; 2009 Nov; 25(3):543-52. PubMed ID: 19443204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical and Computational Strategies for the Study of the Molecular Imprinting Process and Polymer Performance.
    Nicholls IA; Chavan S; Golker K; Karlsson BC; Olsson GD; Rosengren AM; Suriyanarayanan S; Wiklander JG
    Adv Biochem Eng Biotechnol; 2015; 150():25-50. PubMed ID: 25786710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational In Silico Design of Molecularly Imprinted Polymers: Current Challenges and Future Potential.
    Rajpal S; Mishra P; Mizaikoff B
    Int J Mol Sci; 2023 Apr; 24(7):. PubMed ID: 37047758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smart molecularly imprinted polymers: recent developments and applications.
    Ge Y; Butler B; Mirza F; Habib-Ullah S; Fei D
    Macromol Rapid Commun; 2013 Jun; 34(11):903-15. PubMed ID: 23625770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introduction of selectivity and specificity to graphene using an inimitable combination of molecular imprinting and nanotechnology.
    Roy E; Patra S; Tiwari A; Madhuri R; Sharma PK
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):234-248. PubMed ID: 26952532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecularly imprinted polymer particles: synthetic receptors for future medicine.
    Schillemans JP; van Nostrum CF
    Nanomedicine (Lond); 2006 Dec; 1(4):437-47. PubMed ID: 17716146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetic Strategies in Molecular Imprinting.
    Ye L
    Adv Biochem Eng Biotechnol; 2015; 150():1-24. PubMed ID: 25840705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imprinted nanomaterials: a new class of synthetic receptors.
    Flavin K; Resmini M
    Anal Bioanal Chem; 2009 Jan; 393(2):437-44. PubMed ID: 19023566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current Progress of Nanomaterials in Molecularly Imprinted Electrochemical Sensing.
    Zhong C; Yang B; Jiang X; Li J
    Crit Rev Anal Chem; 2018 Jan; 48(1):15-32. PubMed ID: 28777018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and evaluation of a molecularly imprinted polymer for the selective recognition of testosterone--application to molecularly imprinted sorbent assays.
    Tse Sum Bui B; Haupt K
    J Mol Recognit; 2011; 24(6):1123-9. PubMed ID: 22038819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecularly Imprinted Polymers for Catalysis and Synthesis.
    Mirata F; Resmini M
    Adv Biochem Eng Biotechnol; 2015; 150():107-29. PubMed ID: 25786711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms underlying molecularly imprinted polymer molecular memory and the role of crosslinker: resolving debate on the nature of template recognition in phenylalanine anilide imprinted polymers.
    Olsson GD; Karlsson BC; Shoravi S; Wiklander JG; Nicholls IA
    J Mol Recognit; 2012 Feb; 25(2):69-73. PubMed ID: 22290767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Post-imprinting and In-Cavity Functionalization.
    Takeuchi T; Sunayama H; Takano E; Kitayama Y
    Adv Biochem Eng Biotechnol; 2015; 150():95-106. PubMed ID: 25796621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization.
    Wulff G; Liu J
    Acc Chem Res; 2012 Feb; 45(2):239-47. PubMed ID: 21967389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the Binding Properties of Molecularly Imprinted Polymers.
    Ansell RJ
    Adv Biochem Eng Biotechnol; 2015; 150():51-93. PubMed ID: 25796622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecularly imprinted nanostructures by nanoimprint lithography.
    Forchheimer D; Luo G; Montelius L; Ye L
    Analyst; 2010 Jun; 135(6):1219-23. PubMed ID: 20401414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A brief review of coarse-grained and other computational studies of molecularly imprinted polymers.
    Levi L; Raim V; Srebnik S
    J Mol Recognit; 2011; 24(6):883-91. PubMed ID: 22038796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density field theory approach to design multi-template imprinted polymers for carcinogenic PAHs sensing.
    Khan MS; Krupadam RJ
    Comb Chem High Throughput Screen; 2013 Nov; 16(9):682-94. PubMed ID: 24050695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecularly imprinted polymer based enantioselective sensing devices: a review.
    Tiwari MP; Prasad A
    Anal Chim Acta; 2015 Jan; 853():1-18. PubMed ID: 25467446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.