BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

469 related articles for article (PubMed ID: 21476506)

  • 1. A vertical microfluidic probe.
    Kaigala GV; Lovchik RD; Drechsler U; Delamarche E
    Langmuir; 2011 May; 27(9):5686-93. PubMed ID: 21476506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated microfluidic probe station.
    Perrault CM; Qasaimeh MA; Brastaviceanu T; Anderson K; Kabakibo Y; Juncker D
    Rev Sci Instrum; 2010 Nov; 81(11):115107. PubMed ID: 21133501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A compact and versatile microfluidic probe for local processing of tissue sections and biological specimens.
    Cors JF; Lovchik RD; Delamarche E; Kaigala GV
    Rev Sci Instrum; 2014 Mar; 85(3):034301. PubMed ID: 24689601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multipurpose microfluidic probe.
    Juncker D; Schmid H; Delamarche E
    Nat Mater; 2005 Aug; 4(8):622-8. PubMed ID: 16041377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pumping-induced perturbation of flow in microfluidic channels and its implications for on-chip cell culture.
    Zhou J; Ren K; Dai W; Zhao Y; Ryan D; Wu H
    Lab Chip; 2011 Jul; 11(13):2288-94. PubMed ID: 21603722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of hydrodynamically confined microfluidics: controlling flow envelope and pressure.
    Christ KV; Turner KT
    Lab Chip; 2011 Apr; 11(8):1491-501. PubMed ID: 21359386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Second-generation maskless photolithography device for surface micropatterning and microfluidic channel fabrication.
    Itoga K; Kobayashi J; Tsuda Y; Yamato M; Okano T
    Anal Chem; 2008 Feb; 80(4):1323-7. PubMed ID: 18211096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The microfluidic probe: operation and use for localized surface processing.
    Perrault CM; Qasaimeh MA; Juncker D
    J Vis Exp; 2009 Jun; (28):. PubMed ID: 19578328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel PDMS cylindrical channels that generate coaxial flow, and application to fabrication of microfibers and particles.
    Kang E; Shin SJ; Lee KH; Lee SH
    Lab Chip; 2010 Jul; 10(14):1856-61. PubMed ID: 20454720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile single step fabrication of microchannels with varying size.
    Asthana A; Kim KO; Perumal J; Kim DM; Kim DP
    Lab Chip; 2009 Apr; 9(8):1138-42. PubMed ID: 19350097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A microfluidic-based hydrodynamic trap: design and implementation.
    Tanyeri M; Ranka M; Sittipolkul N; Schroeder CM
    Lab Chip; 2011 May; 11(10):1786-94. PubMed ID: 21479293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic patterning of miniaturized DNA arrays on plastic substrates.
    Geissler M; Roy E; Diaz-Quijada GA; Galas JC; Veres T
    ACS Appl Mater Interfaces; 2009 Jul; 1(7):1387-95. PubMed ID: 20355940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic flow cell for sequential digestion of immobilized proteoliposomes.
    Jansson ET; Trkulja CL; Olofsson J; Millingen M; Wikström J; Jesorka A; Karlsson A; Karlsson R; Davidson M; Orwar O
    Anal Chem; 2012 Jul; 84(13):5582-8. PubMed ID: 22656064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, fabrication and characterization of monolithic embedded parylene microchannels in silicon substrate.
    Chen PJ; Shih CY; Tai YC
    Lab Chip; 2006 Jun; 6(6):803-10. PubMed ID: 16738734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation of proteins using a novel two-depth miniaturized free-flow electrophoresis device with multiple outlet fractionation channels.
    Becker M; Marggraf U; Janasek D
    J Chromatogr A; 2009 Nov; 1216(47):8265-9. PubMed ID: 19631324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cell migration device that maintains a defined surface with no cellular damage during wound edge generation.
    Doran MR; Mills RJ; Parker AJ; Landman KA; Cooper-White JJ
    Lab Chip; 2009 Aug; 9(16):2364-9. PubMed ID: 19636468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacing microchip capillary electrophoresis with electrospray ionization mass spectrometry.
    Razunguzwa T; Timperman AT
    Methods Mol Biol; 2006; 339():67-84. PubMed ID: 16790868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-chip cell migration assay using microfluidic channels.
    Nie FQ; Yamada M; Kobayashi J; Yamato M; Kikuchi A; Okano T
    Biomaterials; 2007 Sep; 28(27):4017-22. PubMed ID: 17583787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A microfluidic platform for sequential ligand labeling and cell binding analysis.
    Sui G; Lee CC; Kamei K; Li HJ; Wang JY; Wang J; Herschman HR; Tseng HR
    Biomed Microdevices; 2007 Jun; 9(3):301-5. PubMed ID: 17195108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soft lithographic patterning of supported lipid bilayers onto a surface and inside microfluidic channels.
    Kim P; Lee SE; Jung HS; Lee HY; Kawai T; Suh KY
    Lab Chip; 2006 Jan; 6(1):54-9. PubMed ID: 16372069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.