BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 21476564)

  • 1. Pressure dependence of stabilized Criegee intermediate formation from a sequence of alkenes.
    Drozd GT; Donahue NM
    J Phys Chem A; 2011 May; 115(17):4381-7. PubMed ID: 21476564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 2,3-Dimethyl-2-butene (TME) ozonolysis: pressure dependence of stabilized Criegee intermediates and evidence of stabilized vinyl hydroperoxides.
    Drozd GT; Kroll J; Donahue NM
    J Phys Chem A; 2011 Jan; 115(2):161-6. PubMed ID: 21162563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pressure-Dependent Criegee Intermediate Stabilization from Alkene Ozonolysis.
    Hakala JP; Donahue NM
    J Phys Chem A; 2016 Apr; 120(14):2173-8. PubMed ID: 27018612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pressure Stabilization of Criegee Intermediates Formed from Symmetric trans-Alkene Ozonolysis.
    Hakala JP; Donahue NM
    J Phys Chem A; 2018 Dec; 122(49):9426-9434. PubMed ID: 30441898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cycloalkene ozonolysis: collisionally mediated mechanistic branching.
    Chuong B; Zhang J; Donahue NM
    J Am Chem Soc; 2004 Oct; 126(39):12363-73. PubMed ID: 15453770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unimolecular Decay of Criegee Intermediates to OH Radical Products: Prompt and Thermal Decay Processes.
    Lester MI; Klippenstein SJ
    Acc Chem Res; 2018 Apr; 51(4):978-985. PubMed ID: 29613756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the thermal and photochemical reactions of ozone with 2,3-dimethyl-2-butene.
    Coleman BE; Ault BS
    J Phys Chem A; 2010 Dec; 114(48):12667-74. PubMed ID: 21077641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Criegee intermediates and their impacts on the troposphere.
    Khan MAH; Percival CJ; Caravan RL; Taatjes CA; Shallcross DE
    Environ Sci Process Impacts; 2018 Mar; 20(3):437-453. PubMed ID: 29480909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfur dioxide oxidation induced mechanistic branching and particle formation during the ozonolysis of β-pinene and 2-butene.
    Carlsson PT; Keunecke C; Krüger BC; Maaß MC; Zeuch T
    Phys Chem Chem Phys; 2012 Dec; 14(45):15637-40. PubMed ID: 23090096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radical product yields from the ozonolysis of short chain alkenes under atmospheric boundary layer conditions.
    Alam MS; Rickard AR; Camredon M; Wyche KP; Carr T; Hornsby KE; Monks PS; Bloss WJ
    J Phys Chem A; 2013 Nov; 117(47):12468-83. PubMed ID: 24171583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pressure dependent mechanistic branching in the formation pathways of secondary organic aerosol from cyclic-alkene gas-phase ozonolysis.
    Wolf JL; Richters S; Pecher J; Zeuch T
    Phys Chem Chem Phys; 2011 Jun; 13(23):10952-64. PubMed ID: 21442094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-activity relationship (SAR) for the gas-phase ozonolysis of aliphatic alkenes and dialkenes.
    McGillen MR; Carey TJ; Archibald AT; Wenger JC; Shallcross DE; Percival CJ
    Phys Chem Chem Phys; 2008 Apr; 10(13):1757-68. PubMed ID: 18350181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the reaction of stabilized Criegee intermediates with peroxy radicals in particle formation and growth in air.
    Zhao Y; Wingen LM; Perraud V; Greaves J; Finlayson-Pitts BJ
    Phys Chem Chem Phys; 2015 May; 17(19):12500-14. PubMed ID: 25899614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trends in stabilisation of Criegee intermediates from alkene ozonolysis.
    Newland MJ; Nelson BS; Muñoz A; Ródenas M; Vera T; Tárrega J; Rickard AR
    Phys Chem Chem Phys; 2020 Jun; 22(24):13698-13706. PubMed ID: 32525165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The gas-phase ozonolysis of α-humulene.
    Beck M; Winterhalter R; Herrmann F; Moortgat GK
    Phys Chem Chem Phys; 2011 Jun; 13(23):10970-1001. PubMed ID: 21461420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unimolecular Decay of the Dimethyl-Substituted Criegee Intermediate in Alkene Ozonolysis: Decay Time Scales and the Importance of Tunneling.
    Drozd GT; Kurtén T; Donahue NM; Lester MI
    J Phys Chem A; 2017 Aug; 121(32):6036-6045. PubMed ID: 28692269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct measurement of Criegee intermediate (CH2OO) reactions with acetone, acetaldehyde, and hexafluoroacetone.
    Taatjes CA; Welz O; Eskola AJ; Savee JD; Osborn DL; Lee EP; Dyke JM; Mok DW; Shallcross DE; Percival CJ
    Phys Chem Chem Phys; 2012 Aug; 14(30):10391-400. PubMed ID: 22481381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A kinetic study of the CH2OO Criegee intermediate self-reaction, reaction with SO2 and unimolecular reaction using cavity ring-down spectroscopy.
    Chhantyal-Pun R; Davey A; Shallcross DE; Percival CJ; Orr-Ewing AJ
    Phys Chem Chem Phys; 2015 Feb; 17(5):3617-26. PubMed ID: 25553776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infrared detection of Criegee intermediates formed during the ozonolysis of β-pinene and their reactivity towards sulfur dioxide.
    Ahrens J; Carlsson PT; Hertl N; Olzmann M; Pfeifle M; Wolf JL; Zeuch T
    Angew Chem Int Ed Engl; 2014 Jan; 53(3):715-9. PubMed ID: 24402798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Criegee intermediates in the indoor environment: new insights.
    Shallcross DE; Taatjes CA; Percival CJ
    Indoor Air; 2014 Oct; 24(5):495-502. PubMed ID: 24512513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.