These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 21476580)

  • 1. Combined genetic and metabolic manipulation of lipids in Rhodobacter sphaeroides reveals non-phospholipid substitutions in fully active cytochrome c oxidase.
    Zhang X; Hiser C; Tamot B; Benning C; Reid GE; Ferguson-Miller SM
    Biochemistry; 2011 May; 50(19):3891-902. PubMed ID: 21476580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiolipin deficiency in Rhodobacter sphaeroides alters the lipid profile of membranes and of crystallized cytochrome oxidase, but structure and function are maintained.
    Zhang X; Tamot B; Hiser C; Reid GE; Benning C; Ferguson-Miller S
    Biochemistry; 2011 May; 50(19):3879-90. PubMed ID: 21476578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altering conserved lipid binding sites in cytochrome c oxidase of Rhodobacter sphaeroides perturbs the interaction between subunits I and III and promotes suicide inactivation of the enzyme.
    Varanasi L; Mills D; Murphree A; Gray J; Purser C; Baker R; Hosler J
    Biochemistry; 2006 Dec; 45(50):14896-907. PubMed ID: 17154527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid Composition Affects the Efficiency in the Functional Reconstitution of the Cytochrome
    Hugentobler KG; Heinrich D; Berg J; Heberle J; Brzezinski P; Schlesinger R; Block S
    Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32977390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delipidation of cytochrome c oxidase from Rhodobacter sphaeroides destabilizes its quaternary structure.
    Musatov A; Varhač R; Hosler JP; Sedlák E
    Biochimie; 2016 Jun; 125():23-31. PubMed ID: 26923069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biophysical and biochemical characterization of reconstituted and purified Rhodobacter sphaeroides cytochrome c oxidase in phospholipid vesicles sheds insight into its functional oligomeric structure.
    Cvetkov TL; Prochaska LJ
    Protein Expr Purif; 2007 Dec; 56(2):189-96. PubMed ID: 17910921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mutation in subunit I of cytochrome oxidase from Rhodobacter sphaeroides results in an increase in steady-state activity but completely eliminates proton pumping.
    Pawate AS; Morgan J; Namslauer A; Mills D; Brzezinski P; Ferguson-Miller S; Gennis RB
    Biochemistry; 2002 Nov; 41(45):13417-23. PubMed ID: 12416987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mobile cytochrome c2 and membrane-anchored cytochrome cy are both efficient electron donors to the cbb3- and aa3-type cytochrome c oxidases during respiratory growth of Rhodobacter sphaeroides.
    Daldal F; Mandaci S; Winterstein C; Myllykallio H; Duyck K; Zannoni D
    J Bacteriol; 2001 Mar; 183(6):2013-24. PubMed ID: 11222600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. C-terminal truncation and histidine-tagging of cytochrome c oxidase subunit II reveals the native processing site, shows involvement of the C-terminus in cytochrome c binding, and improves the assay for proton pumping.
    Hiser C; Mills DA; Schall M; Ferguson-Miller S
    Biochemistry; 2001 Feb; 40(6):1606-15. PubMed ID: 11327819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutations in the putative H-channel in the cytochrome c oxidase from Rhodobacter sphaeroides show that this channel is not important for proton conduction but reveal modulation of the properties of heme a.
    Lee HM; Das TK; Rousseau DL; Mills D; Ferguson-Miller S; Gennis RB
    Biochemistry; 2000 Mar; 39(11):2989-96. PubMed ID: 10715119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cbb3 terminal oxidase of Rhodobacter sphaeroides 2.4.1: structural and functional implications for the regulation of spectral complex formation.
    Oh JI; Kaplan S
    Biochemistry; 1999 Mar; 38(9):2688-96. PubMed ID: 10052939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytochrome aa3 of Rhodobacter sphaeroides as a model for mitochondrial cytochrome c oxidase. Purification, kinetics, proton pumping, and spectral analysis.
    Hosler JP; Fetter J; Tecklenburg MM; Espe M; Lerma C; Ferguson-Miller S
    J Biol Chem; 1992 Dec; 267(34):24264-72. PubMed ID: 1332949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutants of the CuA site in cytochrome c oxidase of Rhodobacter sphaeroides: II. Rapid kinetic analysis of electron transfer.
    Wang K; Geren L; Zhen Y; Ma L; Ferguson-Miller S; Durham B; Millett F
    Biochemistry; 2002 Feb; 41(7):2298-304. PubMed ID: 11841222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The roles of Rhodobacter sphaeroides copper chaperones PCu(A)C and Sco (PrrC) in the assembly of the copper centers of the aa(3)-type and the cbb(3)-type cytochrome c oxidases.
    Thompson AK; Gray J; Liu A; Hosler JP
    Biochim Biophys Acta; 2012 Jun; 1817(6):955-64. PubMed ID: 22248670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single electron reduction of cytochrome c oxidase compound F: resolution of partial steps by transient spectroscopy.
    Zaslavsky D; Sadoski RC; Wang K; Durham B; Gennis RB; Millett F
    Biochemistry; 1998 Oct; 37(42):14910-6. PubMed ID: 9778367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water chain formation and possible proton pumping routes in Rhodobacter sphaeroides cytochrome c oxidase: a molecular dynamics comparison of the wild type and R481K mutant.
    Seibold SA; Mills DA; Ferguson-Miller S; Cukier RI
    Biochemistry; 2005 Aug; 44(31):10475-85. PubMed ID: 16060656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A role for subunit III in proton uptake into the D pathway and a possible proton exit pathway in Rhodobacter sphaeroides cytochrome c oxidase.
    Mills DA; Tan Z; Ferguson-Miller S; Hosler J
    Biochemistry; 2003 Jun; 42(24):7410-7. PubMed ID: 12809496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of phospholipids of subunit III in the regulation of structural rearrangements in cytochrome c oxidase of Rhodobacter sphaeroides.
    Alnajjar KS; Cvetkov T; Prochaska L
    Biochemistry; 2015 Feb; 54(4):1053-63. PubMed ID: 25559126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass spectrometric detection of protein, lipid and heme components of cytochrome c oxidase from R. sphaeroides and the stabilization of non-covalent complexes from the enzyme.
    Distler AM; Allison J; Hiser C; Qin L; Hilmi Y; Ferguson-Miller S
    Eur J Mass Spectrom (Chichester); 2004; 10(2):295-308. PubMed ID: 15103107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of conserved lipid/detergent-binding sites in a high-resolution structure of the membrane protein cytochrome c oxidase.
    Qin L; Hiser C; Mulichak A; Garavito RM; Ferguson-Miller S
    Proc Natl Acad Sci U S A; 2006 Oct; 103(44):16117-22. PubMed ID: 17050688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.