BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 21476605)

  • 41. Kidney injury-mediated disruption of intestinal lymphatics involves dicarbonyl-modified lipoproteins.
    Zhong J; Yang HC; Yermalitsky V; Shelton EL; Otsuka T; Wiese CB; May-Zhang LS; Banan B; Abumrad N; Huang J; Cavnar AB; Kirabo A; Yancey PG; Fogo AB; Vickers KC; Linton MF; Davies SS; Kon V
    Kidney Int; 2021 Sep; 100(3):585-596. PubMed ID: 34102217
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tryptophan levels associate with incident cardiovascular disease in chronic kidney disease.
    Konje VC; Rajendiran TM; Bellovich K; Gadegbeku CA; Gipson DS; Afshinnia F; Mathew AV;
    Clin Kidney J; 2021 Apr; 14(4):1097-1105. PubMed ID: 34094518
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Uremic Toxins in Organ Crosstalk.
    Lowenstein J; Nigam SK
    Front Med (Lausanne); 2021; 8():592602. PubMed ID: 33937275
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hypouricemic agents reduce indoxyl sulfate excretion by inhibiting the renal transporters OAT1/3 and ABCG2.
    Taniguchi T; Omura K; Motoki K; Sakai M; Chikamatsu N; Ashizawa N; Takada T; Iwanaga T
    Sci Rep; 2021 Mar; 11(1):7232. PubMed ID: 33790363
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A key role for the transporter OAT1 in systemic lipid metabolism.
    Granados JC; Nigam AK; Bush KT; Jamshidi N; Nigam SK
    J Biol Chem; 2021; 296():100603. PubMed ID: 33785360
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Coordinate regulation of systemic and kidney tryptophan metabolism by the drug transporters OAT1 and OAT3.
    Granados JC; Richelle A; Gutierrez JM; Zhang P; Zhang X; Bhatnagar V; Lewis NE; Nigam SK
    J Biol Chem; 2021; 296():100575. PubMed ID: 33757768
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Regulation of organic anion transporters: Role in physiology, pathophysiology, and drug elimination.
    Zhang J; Wang H; Fan Y; Yu Z; You G
    Pharmacol Ther; 2021 Jan; 217():107647. PubMed ID: 32758646
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular Profiling of Innate Immune Response Mechanisms in Ventilator-associated Pneumonia.
    Pathak KV; McGilvrey MI; Hu CK; Garcia-Mansfield K; Lewandoski K; Eftekhari Z; Yuan YC; Zenhausern F; Menashi E; Pirrotte P
    Mol Cell Proteomics; 2020 Oct; 19(10):1688-1705. PubMed ID: 32709677
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Gut-derived uremic toxin handling in vivo requires OAT-mediated tubular secretion in chronic kidney disease.
    Bush KT; Singh P; Nigam SK
    JCI Insight; 2020 Apr; 5(7):. PubMed ID: 32271169
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Systems Biology Analysis Reveals Eight SLC22 Transporter Subgroups, Including OATs, OCTs, and OCTNs.
    Engelhart DC; Granados JC; Shi D; Saier Jr MH; Baker ME; Abagyan R; Nigam SK
    Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32150922
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Systems Biology of Drug Metabolizing Enzymes and Transporters: Relevance to Quantitative Systems Pharmacology.
    Nigam SK; Bush KT; Bhatnagar V; Poloyac SM; Momper JD
    Clin Pharmacol Ther; 2020 Jul; 108(1):40-53. PubMed ID: 32119114
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Unique metabolite preferences of the drug transporters OAT1 and OAT3 analyzed by machine learning.
    Nigam AK; Li JG; Lall K; Shi D; Bush KT; Bhatnagar V; Abagyan R; Nigam SK
    J Biol Chem; 2020 Feb; 295(7):1829-1842. PubMed ID: 31896576
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Importance of Tubular Function in Chronic Kidney Disease.
    Risso MA; Sallustio S; Sueiro V; Bertoni V; Gonzalez-Torres H; Musso CG
    Int J Nephrol Renovasc Dis; 2019; 12():257-262. PubMed ID: 31849512
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Network of SLC and ABC Transporter and DME Genes Involved in Remote Sensing and Signaling in the Gut-Liver-Kidney Axis.
    Rosenthal SB; Bush KT; Nigam SK
    Sci Rep; 2019 Aug; 9(1):11879. PubMed ID: 31417100
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Differences in proximal tubular solute clearance across common etiologies of chronic kidney disease.
    Wang K; Zelnick LR; Hoofnagle AN; Chen Y; de Boer IH; Himmelfarb J; Kestenbaum B
    Nephrol Dial Transplant; 2020 Nov; 35(11):1916-1923. PubMed ID: 31347660
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Remote sensing and signaling in kidney proximal tubules stimulates gut microbiome-derived organic anion secretion.
    Jansen J; Jansen K; Neven E; Poesen R; Othman A; van Mil A; Sluijter J; Sastre Torano J; Zaal EA; Berkers CR; Esser D; Wichers HJ; van Ede K; van Duursen M; Burtey S; Verhaar MC; Meijers B; Masereeuw R
    Proc Natl Acad Sci U S A; 2019 Aug; 116(32):16105-16110. PubMed ID: 31341083
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Plasma metabolites and lipids associate with kidney function and kidney volume in hypertensive ADPKD patients early in the disease course.
    Kim K; Trott JF; Gao G; Chapman A; Weiss RH
    BMC Nephrol; 2019 Feb; 20(1):66. PubMed ID: 30803434
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Uraemic syndrome of chronic kidney disease: altered remote sensing and signalling.
    Nigam SK; Bush KT
    Nat Rev Nephrol; 2019 May; 15(5):301-316. PubMed ID: 30728454
    [TBL] [Abstract][Full Text] [Related]  

  • 59. From old uraemic toxins to new uraemic toxins: place of 'omics'.
    Massy ZA; Liabeuf S
    Nephrol Dial Transplant; 2018 Oct; 33(suppl_3):iii2-iii5. PubMed ID: 30281133
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of ABCG2 as an Exporter of Uremic Toxin Indoxyl Sulfate in Mice and as a Crucial Factor Influencing CKD Progression.
    Takada T; Yamamoto T; Matsuo H; Tan JK; Ooyama K; Sakiyama M; Miyata H; Yamanashi Y; Toyoda Y; Higashino T; Nakayama A; Nakashima A; Shinomiya N; Ichida K; Ooyama H; Fujimori S; Suzuki H
    Sci Rep; 2018 Jul; 8(1):11147. PubMed ID: 30042379
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.