These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 21476607)
1. A genetically encoded probe for the identification of proteins that form sulfenic acid in response to H2O2 in Saccharomyces cerevisiae. Takanishi CL; Wood MJ J Proteome Res; 2011 Jun; 10(6):2715-24. PubMed ID: 21476607 [TBL] [Abstract][Full Text] [Related]
2. A genetically encoded probe for cysteine sulfenic acid protein modification in vivo. Takanishi CL; Ma LH; Wood MJ Biochemistry; 2007 Dec; 46(50):14725-32. PubMed ID: 18020457 [TBL] [Abstract][Full Text] [Related]
3. Chemical dissection of an essential redox switch in yeast. Paulsen CE; Carroll KS Chem Biol; 2009 Feb; 16(2):217-25. PubMed ID: 19230722 [TBL] [Abstract][Full Text] [Related]
7. The role of Yap1p and Skn7p-mediated oxidative stress response in the defence of Saccharomyces cerevisiae against singlet oxygen. Brombacher K; Fischer BB; Rüfenacht K; Eggen RI Yeast; 2006 Jul; 23(10):741-50. PubMed ID: 16862604 [TBL] [Abstract][Full Text] [Related]
8. Engineered Saccharomyces cerevisiae strain BioS-OS1/2, for the detection of oxidative stress. Jayaraman M; Radhika V; Bamne MN; Ramos R; Briggs R; Dhanasekaran DN Biotechnol Prog; 2005; 21(5):1373-9. PubMed ID: 16209540 [TBL] [Abstract][Full Text] [Related]
9. Multistep disulfide bond formation in Yap1 is required for sensing and transduction of H2O2 stress signal. Okazaki S; Tachibana T; Naganuma A; Mano N; Kuge S Mol Cell; 2007 Aug; 27(4):675-88. PubMed ID: 17707237 [TBL] [Abstract][Full Text] [Related]
10. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Denu JM; Tanner KG Biochemistry; 1998 Apr; 37(16):5633-42. PubMed ID: 9548949 [TBL] [Abstract][Full Text] [Related]
11. Molecular mechanism of oxidative stress perception by the Orp1 protein. Ma LH; Takanishi CL; Wood MJ J Biol Chem; 2007 Oct; 282(43):31429-36. PubMed ID: 17720812 [TBL] [Abstract][Full Text] [Related]
12. Ionizing radiation induces a Yap1-dependent peroxide stress response in yeast. Molin M; Renault JP; Lagniel G; Pin S; Toledano M; Labarre J Free Radic Biol Med; 2007 Jul; 43(1):136-44. PubMed ID: 17561102 [TBL] [Abstract][Full Text] [Related]
13. Contribution of Yap1 towards Saccharomyces cerevisiae adaptation to arsenic-mediated oxidative stress. Menezes RA; Amaral C; Batista-Nascimento L; Santos C; Ferreira RB; Devaux F; Eleutherio EC; Rodrigues-Pousada C Biochem J; 2008 Sep; 414(2):301-11. PubMed ID: 18439143 [TBL] [Abstract][Full Text] [Related]
14. Gpx3-dependent responses against oxidative stress in Saccharomyces cerevisiae. Kho CW; Lee PY; Bae KH; Kang S; Cho S; Lee DH; Sun CH; Yi GS; Park BC; Park SG J Microbiol Biotechnol; 2008 Feb; 18(2):270-82. PubMed ID: 18309271 [TBL] [Abstract][Full Text] [Related]
15. The role of reactive oxygen species in the induction of Ty1 retrotransposition in Saccharomyces cerevisiae. Stoycheva T; Pesheva M; Venkov P Yeast; 2010 May; 27(5):259-67. PubMed ID: 20073031 [TBL] [Abstract][Full Text] [Related]
16. Sulfenic acid formation in human serum albumin by hydrogen peroxide and peroxynitrite. Carballal S; Radi R; Kirk MC; Barnes S; Freeman BA; Alvarez B Biochemistry; 2003 Aug; 42(33):9906-14. PubMed ID: 12924939 [TBL] [Abstract][Full Text] [Related]
17. The adaptive response of anaerobically grown Saccharomyces cerevisiae to hydrogen peroxide is mediated by the Yap1 and Skn7 transcription factors. Beckhouse AG; Grant CM; Rogers PJ; Dawes IW; Higgins VJ FEMS Yeast Res; 2008 Dec; 8(8):1214-22. PubMed ID: 18795957 [TBL] [Abstract][Full Text] [Related]
18. Protein sulfenic acid formation: from cellular damage to redox regulation. Roos G; Messens J Free Radic Biol Med; 2011 Jul; 51(2):314-26. PubMed ID: 21605662 [TBL] [Abstract][Full Text] [Related]
19. Activity of the Yap1 transcription factor in Saccharomyces cerevisiae is modulated by methylglyoxal, a metabolite derived from glycolysis. Maeta K; Izawa S; Okazaki S; Kuge S; Inoue Y Mol Cell Biol; 2004 Oct; 24(19):8753-64. PubMed ID: 15367692 [TBL] [Abstract][Full Text] [Related]