These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 21476616)

  • 1. Distortion-product otoacoustic-emission suppression tuning in human infants and adults using absorbed sound power.
    Keefe DH; Abdala C
    J Acoust Soc Am; 2011 Apr; 129(4):EL108-13. PubMed ID: 21476616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of middle-ear immaturity on distortion product otoacoustic emission suppression tuning in infant ears.
    Abdala C; Keefe DH
    J Acoust Soc Am; 2006 Dec; 120(6):3832-42. PubMed ID: 17225410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory of forward and reverse middle-ear transmission applied to otoacoustic emissions in infant and adult ears.
    Keefe DH; Abdala C
    J Acoust Soc Am; 2007 Feb; 121(2):978-93. PubMed ID: 17348521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specification of absorbed-sound power in the ear canal: application to suppression of stimulus frequency otoacoustic emissions.
    Keefe DH; Schairer KS
    J Acoust Soc Am; 2011 Feb; 129(2):779-91. PubMed ID: 21361437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of negative middle ear pressure on distortion product otoacoustic emissions and application of a compensation procedure in humans.
    Sun XM; Shaver MD
    Ear Hear; 2009 Apr; 30(2):191-202. PubMed ID: 19194291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ear canal pressure variations versus negative middle ear pressure: comparison using distortion product otoacoustic emission measurement in humans.
    Sun XM
    Ear Hear; 2012; 33(1):69-78. PubMed ID: 21747284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breaking away: violation of distortion emission phase-frequency invariance at low frequencies.
    Dhar S; Rogers A; Abdala C
    J Acoust Soc Am; 2011 May; 129(5):3115-22. PubMed ID: 21568414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of distortion-product otoacoustic emission and stimulus-frequency otoacoustic emission two-tone suppression in humans.
    Rasetshwane DM; Bosen EC; Kopun JG; Neely ST
    J Acoust Soc Am; 2019 Dec; 146(6):4481. PubMed ID: 31893726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distortion product otoacoustic emission (2f1-f2) suppression in 3-month-old infants: evidence for postnatal maturation of human cochlear function?
    Abdala C
    J Acoust Soc Am; 2004 Dec; 116(6):3572-80. PubMed ID: 15658708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Level dependence of distortion product otoacoustic emission phase is attributed to component mixing.
    Abdala C; Dhar S; Kalluri R
    J Acoust Soc Am; 2011 May; 129(5):3123-33. PubMed ID: 21568415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative study of distortion-product-otoacoustic-emission fine structure in human newborns and adults with normal hearing.
    Dhar S; Abdala C
    J Acoust Soc Am; 2007 Oct; 122(4):2191-202. PubMed ID: 17902855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reducing reflected contributions to ear-canal distortion product otoacoustic emissions in humans.
    Johnson TA; Neely ST; Kopun JG; Gorga MP
    J Acoust Soc Am; 2006 Jun; 119(6):3896-907. PubMed ID: 16838533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. General characteristics and suppression tuning properties of the distortion-product otoacoustic emission 2f1-f2 in the barn owl.
    Taschenberger G; Manley GA
    Hear Res; 1998 Sep; 123(1-2):183-200. PubMed ID: 9745966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distortion product otoacoustic emission suppression tuning curves in human adults and neonates.
    Abdala C; Sininger YS; Ekelid M; Zeng FG
    Hear Res; 1996 Sep; 98(1-2):38-53. PubMed ID: 8880180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of neonatal hearing impairment: distortion product otoacoustic emissions during the perinatal period.
    Gorga MP; Norton SJ; Sininger YS; Cone-Wesson B; Folsom RC; Vohr BR; Widen JE; Neely ST
    Ear Hear; 2000 Oct; 21(5):400-24. PubMed ID: 11059701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forward and reverse transfer functions of the middle ear based on pressure and velocity DPOAEs with implications for differential hearing diagnosis.
    Dalhoff E; Turcanu D; Gummer AW
    Hear Res; 2011 Oct; 280(1-2):86-99. PubMed ID: 21624450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of in situ, sound-level calibration on distortion-product otoacoustic emission variability.
    Scheperle RA; Neely ST; Kopun JG; Gorga MP
    J Acoust Soc Am; 2008 Jul; 124(1):288-300. PubMed ID: 18646977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of ear canal pressure and age on wideband absorbance in young infants.
    Aithal S; Aithal V; Kei J
    Int J Audiol; 2017 May; 56(5):346-355. PubMed ID: 28599603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression tuning of distortion-product otoacoustic emissions: results from cochlear mechanics simulation.
    Liu YW; Neely ST
    J Acoust Soc Am; 2013 Feb; 133(2):951-61. PubMed ID: 23363112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distortion product otoacoustic emission fine structure is responsible for variability of distortion product otoacoustic emission contralateral suppression.
    Sun XM
    J Acoust Soc Am; 2008 Jun; 123(6):4310-20. PubMed ID: 18537382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.