BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 21476669)

  • 1. A computational study of asymmetric glottal jet deflection during phonation.
    Zheng X; Mittal R; Bielamowicz S
    J Acoust Soc Am; 2011 Apr; 129(4):2133-43. PubMed ID: 21476669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric glottal jet deflection: differences of two- and three-dimensional models.
    Mattheus W; Brücker C
    J Acoust Soc Am; 2011 Dec; 130(6):EL373-9. PubMed ID: 22225129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation.
    Zheng X; Bielamowicz S; Luo H; Mittal R
    Ann Biomed Eng; 2009 Mar; 37(3):625-42. PubMed ID: 19142730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unsteady laryngeal airflow simulations of the intra-glottal vortical structures.
    Mihaescu M; Khosla SM; Murugappan S; Gutmark EJ
    J Acoust Soc Am; 2010 Jan; 127(1):435-44. PubMed ID: 20058989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational study of false vocal folds effects on unsteady airflows through static models of the human larynx.
    Farbos de Luzan C; Chen J; Mihaescu M; Khosla SM; Gutmark E
    J Biomech; 2015 May; 48(7):1248-57. PubMed ID: 25835787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An experimental analysis of the pressures and flows within a driven mechanical model of phonation.
    Kucinschi BR; Scherer RC; Dewitt KJ; Ng TT
    J Acoust Soc Am; 2006 May; 119(5 Pt 1):3011-21. PubMed ID: 16708957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct-numerical simulation of the glottal jet and vocal-fold dynamics in a three-dimensional laryngeal model.
    Zheng X; Mittal R; Xue Q; Bielamowicz S
    J Acoust Soc Am; 2011 Jul; 130(1):404-15. PubMed ID: 21786908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of flow-structure interaction in the larynx during phonation using an immersed-boundary method.
    Luo H; Mittal R; Bielamowicz SA
    J Acoust Soc Am; 2009 Aug; 126(2):816-24. PubMed ID: 19640046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of supraglottal structures on the glottal jet exiting a two-layer synthetic, self-oscillating vocal fold model.
    Drechsel JS; Thomson SL
    J Acoust Soc Am; 2008 Jun; 123(6):4434-45. PubMed ID: 18537394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational Modeling of Voice Production Using Excised Canine Larynx.
    Jiang W; Farbos de Luzan C; Wang X; Oren L; Khosla SM; Xue Q; Zheng X
    J Biomech Eng; 2022 Feb; 144(2):. PubMed ID: 34423809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational study of effects of tension imbalance on phonation in a three-dimensional tubular larynx model.
    Xue Q; Zheng X; Mittal R; Bielamowicz S
    J Voice; 2014 Jul; 28(4):411-9. PubMed ID: 24725589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow visualization and pressure distributions in a model of the glottis with a symmetric and oblique divergent angle of 10 degrees.
    Shinwari D; Scherer RC; DeWitt KJ; Afjeh AA
    J Acoust Soc Am; 2003 Jan; 113(1):487-97. PubMed ID: 12558286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds.
    Tao C; Zhang Y; Hottinger DG; Jiang JJ
    J Acoust Soc Am; 2007 Oct; 122(4):2270-8. PubMed ID: 17902863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pressure distributions in a static physical model of the hemilarynx: measurements and computations.
    Fulcher LP; Scherer RC; De Witt KJ; Thapa P; Bo Y; Kucinschi BR
    J Voice; 2010 Jan; 24(1):2-20. PubMed ID: 18538986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glottal flow through a two-mass model: comparison of Navier-Stokes solutions with simplified models.
    de Vries MP; Schutte HK; Veldman AE; Verkerke GJ
    J Acoust Soc Am; 2002 Apr; 111(4):1847-53. PubMed ID: 12002868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow separation in a computational oscillating vocal fold model.
    Alipour F; Scherer RC
    J Acoust Soc Am; 2004 Sep; 116(3):1710-9. PubMed ID: 15478438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unsteady behavior of flow in a scaled-up vocal folds model.
    Krane M; Barry M; Wei T
    J Acoust Soc Am; 2007 Dec; 122(6):3659-70. PubMed ID: 18247773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effect of False Vocal Folds on Laryngeal Flow Resistance in a Tubular Three-dimensional Computational Laryngeal Model.
    Xue Q; Zheng X
    J Voice; 2017 May; 31(3):275-281. PubMed ID: 27178452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional nature of the glottal jet.
    Triep M; Brücker C
    J Acoust Soc Am; 2010 Mar; 127(3):1537-47. PubMed ID: 20329854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intraglottal geometry and velocity measurements in canine larynges.
    Oren L; Khosla S; Gutmark E
    J Acoust Soc Am; 2014 Jan; 135(1):380-8. PubMed ID: 24437778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.