BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 21477201)

  • 1. The importance of marine vs. human-induced subsidies in the maintenance of an expanding mesocarnivore in the arctic tundra.
    Killengreen ST; Lecomte N; Ehrich D; Schott T; Yoccoz NG; Ims RA
    J Anim Ecol; 2011 Sep; 80(5):1049-60. PubMed ID: 21477201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vole abundance and reindeer carcasses determine breeding activity of Arctic foxes in low Arctic Yamal, Russia.
    Ehrich D; Cerezo M; Rodnikova AY; Sokolova NA; Fuglei E; Shtro VG; Sokolov AA
    BMC Ecol; 2017 Sep; 17(1):32. PubMed ID: 28915877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interference in the tundra predator guild studied using local ecological knowledge.
    Ehrich D; Strømeng MA; Killengreen ST
    Oecologia; 2016 Apr; 180(4):1195-203. PubMed ID: 26686344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benefiting from a migratory prey: spatio-temporal patterns in allochthonous subsidization of an Arctic predator.
    Giroux MA; Berteaux D; Lecomte N; Gauthier G; Szor G; Bêty J
    J Anim Ecol; 2012 May; 81(3):533-42. PubMed ID: 22268371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predator behaviour and predation risk in the heterogeneous Arctic environment.
    Lecomte N; Careau V; Gauthier G; Giroux JF
    J Anim Ecol; 2008 May; 77(3):439-47. PubMed ID: 18248387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Top predators, mesopredators and their prey: interference ecosystems along bioclimatic productivity gradients.
    Elmhagen B; Ludwig G; Rushton SP; Helle P; Lindén H
    J Anim Ecol; 2010 Jul; 79(4):785-94. PubMed ID: 20337755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reproductive responses to spatial and temporal prey availability in a coastal Arctic fox population.
    Eide NE; Stien A; Prestrud P; Yoccoz NG; Fuglei E
    J Anim Ecol; 2012 May; 81(3):640-8. PubMed ID: 22211323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trophic control of mesopredators in terrestrial ecosystems: top-down or bottom-up?
    Elmhagen B; Rushton SP
    Ecol Lett; 2007 Mar; 10(3):197-206. PubMed ID: 17305803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predator co-occurrence in alpine and Arctic tundra in relation to fluctuating prey.
    Rød-Eriksen L; Killengreen ST; Ehrich D; Ims RA; Herfindal I; Landa AM; Eide NE
    J Anim Ecol; 2023 Mar; 92(3):635-647. PubMed ID: 36528820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disentangling trophic relationships in a High Arctic tundra ecosystem through food web modeling.
    Legagneux P; Gauthier G; Berteaux D; Bêty J; Cadieux MC; Bilodeau F; Bolduc E; McKinnon L; Tarroux A; Therrien JF; Morissette L; Krebs CJ
    Ecology; 2012 Jul; 93(7):1707-16. PubMed ID: 22919916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct and indirect effects of regional and local climatic factors on trophic interactions in the Arctic tundra.
    Juhasz CC; Shipley B; Gauthier G; Berteaux D; Lecomte N
    J Anim Ecol; 2020 Mar; 89(3):704-715. PubMed ID: 31538330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rough-legged buzzards, Arctic foxes and red foxes in a tundra ecosystem without rodents.
    Pokrovsky I; Ehrich D; Ims RA; Kondratyev AV; Kruckenberg H; Kulikova O; Mihnevich J; Pokrovskaya L; Shienok A
    PLoS One; 2015; 10(2):e0118740. PubMed ID: 25692786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seasonal food webs with migrations: multi-season models reveal indirect species interactions in the Canadian Arctic tundra.
    Hutchison C; Guichard F; Legagneux P; Gauthier G; Bêty J; Berteaux D; Fauteux D; Gravel D
    Philos Trans A Math Phys Eng Sci; 2020 Oct; 378(2181):20190354. PubMed ID: 32862818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disentangling the relative influences of global drivers of change in biodiversity: A study of the twentieth-century red fox expansion into the Canadian Arctic.
    Gallant D; Lecomte N; Berteaux D
    J Anim Ecol; 2020 Feb; 89(2):565-576. PubMed ID: 31407338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial patterns and dynamic responses of arctic food webs corroborate the exploitation ecosystems hypothesis (EEH).
    Aunapuu M; Dahlgren J; Oksanen T; Grellmann D; Oksanen L; Olofsson J; Rammul U; Schneider M; Johansen B; Hygen HO
    Am Nat; 2008 Feb; 171(2):249-62. PubMed ID: 18197777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The changing contribution of top-down and bottom-up limitation of mesopredators during 220 years of land use and climate change.
    Pasanen-Mortensen M; Elmhagen B; Lindén H; Bergström R; Wallgren M; van der Velde Y; Cousins SA
    J Anim Ecol; 2017 May; 86(3):566-576. PubMed ID: 28075011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prolonging the arctic pulse: long-term exploitation of cached eggs by arctic foxes when lemmings are scarce.
    Samelius G; Alisauskas RT; Hobson KA; Larivière S
    J Anim Ecol; 2007 Sep; 76(5):873-80. PubMed ID: 17714265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variability in marine resources affects arctic fox population dynamics.
    Roth JD
    J Anim Ecol; 2003 Jul; 72(4):668-676. PubMed ID: 30893960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resource partitioning among avian predators of the Arctic tundra.
    Seyer Y; Gauthier G; Fauteux D; Therrien JF
    J Anim Ecol; 2020 Dec; 89(12):2934-2945. PubMed ID: 32965060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The marine side of a terrestrial carnivore: intra-population variation in use of allochthonous resources by arctic foxes.
    Tarroux A; Bêty J; Gauthier G; Berteaux D
    PLoS One; 2012; 7(8):e42427. PubMed ID: 22900021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.