BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 21477409)

  • 21. Uncovering lead formate crystallization in oil-based paintings.
    Švarcová S; Kočí E; Bezdička P; Garrappa S; Kobera L; Plocek J; Brus J; Šťastný M; Hradil D
    Dalton Trans; 2020 Apr; 49(16):5044-5054. PubMed ID: 32186568
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Identification of Multiple Crystalline Zinc Soap Structures Using Infrared Spectroscopy.
    Hermans J; Helwig K
    Appl Spectrosc; 2020 Dec; 74(12):1505-1514. PubMed ID: 33035076
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Attenuated total reflection micro FTIR characterisation of pigment-binder interaction in reconstructed paint films.
    Mazzeo R; Prati S; Quaranta M; Joseph E; Kendix E; Galeotti M
    Anal Bioanal Chem; 2008 Sep; 392(1-2):65-76. PubMed ID: 18454281
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Insight into the effects of moisture and layer build-up on the formation of lead soaps using micro-ATR-FTIR spectroscopic imaging of complex painted stratigraphies.
    Possenti E; Colombo C; Realini M; Song CL; Kazarian SG
    Anal Bioanal Chem; 2021 Jan; 413(2):455-467. PubMed ID: 33169173
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of pigments in paint cross sections by reflection visible light imaging microspectroscopy.
    van der Weerd J; van Veen MK; Heeren RM; Boon JJ
    Anal Chem; 2003 Feb; 75(4):716-22. PubMed ID: 12622357
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spectroscopic studies on the darkening of lead white.
    Goltz D; McClelland J; Schellenberg A; Attas M; Cloutis E; Collins C
    Appl Spectrosc; 2003 Nov; 57(11):1393-8. PubMed ID: 14658154
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Compositional and quantitative microtextural characterization of historic paintings by micro-X-ray diffraction and Raman microscopy.
    Romero-Pastor J; Duran A; Rodríguez-Navarro AB; Van Grieken R; Cardell C
    Anal Chem; 2011 Nov; 83(22):8420-8. PubMed ID: 21981573
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chemical distribution in high-solids paint overspray aerosols.
    D'Arcy JB; Chan TL
    Am Ind Hyg Assoc J; 1990 Mar; 51(3):132-8. PubMed ID: 2327324
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combined SERS and Raman analysis for the identification of red pigments in cross-sections from historic oil paintings.
    Frano KA; Mayhew HE; Svoboda SA; Wustholz KL
    Analyst; 2014 Dec; 139(24):6450-5. PubMed ID: 25340987
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Study of mural paintings using in situ XRF, confocal synchrotron-μ-XRF, μ-XRD, optical microscopy, and SEM-EDS--the case of the frescoes from Misericordia Church of Odemira.
    Valadas S; Candeias A; Mirão J; Tavares D; Coroado J; Simon R; Silva AS; Gil M; Guilherme A; Carvalho ML
    Microsc Microanal; 2011 Oct; 17(5):702-9. PubMed ID: 21888755
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nitrogen dioxide and ozone as factors in the availability of lead from lead-based paints.
    Edwards RD; Lam NL; Zhang L; Johnson MA; Kleinman MT
    Environ Sci Technol; 2009 Nov; 43(22):8516-21. PubMed ID: 20028045
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Old Masters' lead white pigments: investigations of paintings from the 16th to the 17th century using high precision lead isotope abundance ratios.
    Fortunato G; Ritter A; Fabian D
    Analyst; 2005 Jun; 130(6):898-906. PubMed ID: 15912239
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional characterization of pigment dispersion in dried paint films using focused ion beam-scanning electron microscopy.
    Lin JC; Heeschen W; Reffner J; Hook J
    Microsc Microanal; 2012 Apr; 18(2):266-71. PubMed ID: 22293467
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Methodology for processing backscattered electron images. Application to Aguada archaeological paints.
    Galván Josa V; Bertolino SR; Riveros JA; Castellano G
    Micron; 2009 Dec; 40(8):793-9. PubMed ID: 19651519
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analytical imaging studies clarifying the process of the darkening of vermilion in paintings.
    Keune K; Boon JJ
    Anal Chem; 2005 Aug; 77(15):4742-50. PubMed ID: 16053284
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical Mapping of the Degradation of Geranium Lake in Paint Cross Sections by MALDI-MSI.
    Alvarez-Martin A; Quanico J; Scovacricchi T; Avranovich Clerici E; Baggerman G; Janssens K
    Anal Chem; 2023 Dec; 95(49):18215-18223. PubMed ID: 37994904
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Relationship between lead levels on painted surfaces and percent lead in the particles aerosolized during lead abatement.
    Choe KT; Trunov M; Menrath W; Succop P; Grinshpun SA
    Appl Occup Environ Hyg; 2002 Aug; 17(8):573-9. PubMed ID: 12166892
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of synchrotron X-ray spectromicroscopy and related methods. 2. Original paint layer samples.
    Monico L; Van der Snickt G; Janssens K; De Nolf W; Miliani C; Dik J; Radepont M; Hendriks E; Geldof M; Cotte M
    Anal Chem; 2011 Feb; 83(4):1224-31. PubMed ID: 21314202
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Raman analysis of complex pigment mixtures in 20th century metal knight shields of the Order of the Elephant.
    Lauridsen CB; Sanyova J; Simonsen KP
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Nov; 150():54-62. PubMed ID: 26023056
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Composition of Renaissance paint layers: simultaneous particle induced X-ray emission and backscattering spectrometry.
    de Viguerie L; Beck L; Salomon J; Pichon L; Walter P
    Anal Chem; 2009 Oct; 81(19):7960-6. PubMed ID: 19731942
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.