These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 21477487)
1. Infection and ultrastructure of conidia and pycnidia of Stenocarpella maydis in maize. Xia Z; Wu H; Achar PN J Food Prot; 2011 Apr; 74(4):676-80. PubMed ID: 21477487 [TBL] [Abstract][Full Text] [Related]
2. Bioactive metabolites from Stenocarpella maydis, a stalk and ear rot pathogen of maize. Wicklow DT; Rogers KD; Dowd PF; Gloer JB Fungal Biol; 2011 Feb; 115(2):133-42. PubMed ID: 21315311 [TBL] [Abstract][Full Text] [Related]
3. Diplodiatoxin, chaetoglobosins, and diplonine associated with a field outbreak of Stenocarpella ear rot in Illinois. Rogers KD; Cannistra JC; Gloer JB; Wicklow DT Mycotoxin Res; 2014 May; 30(2):61-70. PubMed ID: 24504633 [TBL] [Abstract][Full Text] [Related]
4. Allozyme-specific modification of a maize seed chitinase by a protein secreted by the fungal pathogen Stenocarpella maydis. Naumann TA; Wicklow DT Phytopathology; 2010 Jul; 100(7):645-54. PubMed ID: 20528182 [TBL] [Abstract][Full Text] [Related]
5. Comparative genomics of maize ear rot pathogens reveals expansion of carbohydrate-active enzymes and secondary metabolism backbone genes in Stenocarpella maydis. Zaccaron AZ; Woloshuk CP; Bluhm BH Fungal Biol; 2017 Nov; 121(11):966-983. PubMed ID: 29029703 [TBL] [Abstract][Full Text] [Related]
6. Uncovering the Infection Strategy of Caldwell DL; da Silva CR; McCoy AG; Avila H; Bonkowski JC; Chilvers MI; Helm M; Telenko DEP; Iyer-Pascuzzi AS Phytopathology; 2024 May; 114(5):1075-1087. PubMed ID: 38079374 [TBL] [Abstract][Full Text] [Related]
7. A survey of pre-harvest ear rot diseases of maize and associated mycotoxins in south and central Zambia. Mukanga M; Derera J; Tongoona P; Laing MD Int J Food Microbiol; 2010 Jul; 141(3):213-21. PubMed ID: 20626099 [TBL] [Abstract][Full Text] [Related]
8. Genetic Diversity of Stenocarpella maydis in the Major Corn Production Areas of the United States. Romero Luna MP; Aime MC; Chilvers MI; Wise KA Plant Dis; 2017 Dec; 101(12):2020-2026. PubMed ID: 30677369 [TBL] [Abstract][Full Text] [Related]
9. Morphological observations of Diplodia maydis on synthetic and natural substrates as revealed by scanning electron microscopy. Murphy JA; Campbell LL; Pappelis AJ Appl Microbiol; 1974 Jan; 27(1):232-50. PubMed ID: 4203784 [TBL] [Abstract][Full Text] [Related]
10. Activity of the dinitroaniline fungicide fluazinam against Bipolaris maydis. Chen YL; Mao XW; Wang JX; Wu LY; Zhou MG; Hou YP Pestic Biochem Physiol; 2018 Jun; 148():8-15. PubMed ID: 29891381 [TBL] [Abstract][Full Text] [Related]
11. Fusarium diseases of maize associated with mycotoxin contamination of agricultural products intended to be used for food and feed. Oldenburg E; Höppner F; Ellner F; Weinert J Mycotoxin Res; 2017 Aug; 33(3):167-182. PubMed ID: 28455556 [TBL] [Abstract][Full Text] [Related]
12. Use of PCR to detect infection of differentially susceptible maize cultivars using Ustilago maydis strains of variable virulence. Martínez-Espinoza AD; León-Ramírez CG; Singh N; Ruiz-Herrera J Int Microbiol; 2003 Jun; 6(2):117-20. PubMed ID: 12768432 [TBL] [Abstract][Full Text] [Related]
13. Effective chemical protection against the maize late wilt causal agent, Harpophora maydis, in the field. Degani O; Dor S; Movshowitz D; Fraidman E; Rabinovitz O; Graph S PLoS One; 2018; 13(12):e0208353. PubMed ID: 30562344 [TBL] [Abstract][Full Text] [Related]
14. Characterization of cell death caused by diplodiatoxin and dipmatol, toxic metabolites of Stenocarpella maydis. Masango MG; Ellis CE; Botha CJ Toxicon; 2015 Aug; 102():14-24. PubMed ID: 26004494 [TBL] [Abstract][Full Text] [Related]
15. Regulation of stomatal tropism and infection by light in Cercospora zeae-maydis: evidence for coordinated host/pathogen responses to photoperiod? Kim H; Ridenour JB; Dunkle LD; Bluhm BH PLoS Pathog; 2011 Jul; 7(7):e1002113. PubMed ID: 21829344 [TBL] [Abstract][Full Text] [Related]
16. Cytotoxicity of diplodiatoxin, dipmatol and diplonine, metabolites synthesized by Stenocarpella maydis. Masango MG; Ferreira GC; Ellis CE; Elgorashi EE; Botha CJ Toxicon; 2014 May; 82():26-9. PubMed ID: 24530231 [TBL] [Abstract][Full Text] [Related]
17. Comparative transcriptome profiling identifies maize line specificity of fungal effectors in the maize-Ustilago maydis interaction. Schurack S; Depotter JRL; Gupta D; Thines M; Doehlemann G Plant J; 2021 May; 106(3):733-752. PubMed ID: 33570802 [TBL] [Abstract][Full Text] [Related]
18. A rapid and efficient method for assessing pathogenicity of ustilago maydis on maize and teosinte lines. Chavan S; Smith SM J Vis Exp; 2014 Jan; (83):e50712. PubMed ID: 24430201 [TBL] [Abstract][Full Text] [Related]
19. Indirect selection for resistance to ear rot and leaf diseases in maize lines using biplots. Pereira GS; Camargos RB; Balestre M; Von Pinho RG; C Melo WM Genet Mol Res; 2015 Sep; 14(3):11052-62. PubMed ID: 26400335 [TBL] [Abstract][Full Text] [Related]
20. Antifungal metabolites (monorden, monocillins I, II, III) from Colletotrichum graminicola, a systemic vascular pathogen of maize. Wicklow DT; Jordan AM; Gloer JB Mycol Res; 2009 Dec; 113(Pt 12):1433-42. PubMed ID: 19825415 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]