BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 21478161)

  • 1. The strictly conserved Arg-321 residue in the active site of Escherichia coli topoisomerase I plays a critical role in DNA rejoining.
    Narula G; Annamalai T; Aedo S; Cheng B; Sorokin E; Wong A; Tse-Dinh YC
    J Biol Chem; 2011 May; 286(21):18673-80. PubMed ID: 21478161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of a covalent intermediate in DNA cleavage and rejoining by Escherichia coli DNA topoisomerase I.
    Zhang Z; Cheng B; Tse-Dinh YC
    Proc Natl Acad Sci U S A; 2011 Apr; 108(17):6939-44. PubMed ID: 21482796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of Mg2+ binding and DNA religation by bacterial topoisomerase I via introduction of an additional positive charge into the active site region.
    Sorokin EP; Cheng B; Rathi S; Aedo SJ; Abrenica MV; Tse-Dinh YC
    Nucleic Acids Res; 2008 Aug; 36(14):4788-96. PubMed ID: 18653534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutation adjacent to the active site tyrosine can enhance DNA cleavage and cell killing by the TOPRIM Gly to Ser mutant of bacterial topoisomerase I.
    Cheng B; Sorokin EP; Tse-Dinh YC
    Nucleic Acids Res; 2008 Feb; 36(3):1017-25. PubMed ID: 18096618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and computational investigations of Ser10 and Lys13 in the binding and cleavage of DNA substrates by Escherichia coli DNA topoisomerase I.
    Strahs D; Zhu CX; Cheng B; Chen J; Tse-Dinh YC
    Nucleic Acids Res; 2006; 34(6):1785-97. PubMed ID: 16582104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-directed mutagenesis of conserved aspartates, glutamates and arginines in the active site region of Escherichia coli DNA topoisomerase I.
    Zhu CX; Roche CJ; Papanicolaou N; DiPietrantonio A; Tse-Dinh YC
    J Biol Chem; 1998 Apr; 273(15):8783-9. PubMed ID: 9535856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating mycobacterial topoisomerase I mechanism from the analysis of metal and DNA substrate interactions at the active site.
    Cao N; Tan K; Annamalai T; Joachimiak A; Tse-Dinh YC
    Nucleic Acids Res; 2018 Aug; 46(14):7296-7308. PubMed ID: 29905859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asp-to-Asn substitution at the first position of the DxD TOPRIM motif of recombinant bacterial topoisomerase I is extremely lethal to E. coli.
    Cheng B; Annamalai T; Sorokin E; Abrenica M; Aedo S; Tse-Dinh YC
    J Mol Biol; 2009 Jan; 385(2):558-67. PubMed ID: 19013470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial cell killing mediated by topoisomerase I DNA cleavage activity.
    Cheng B; Shukla S; Vasunilashorn S; Mukhopadhyay S; Tse-Dinh YC
    J Biol Chem; 2005 Nov; 280(46):38489-95. PubMed ID: 16159875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Residues of E. coli topoisomerase I conserved for interaction with a specific cytosine base to facilitate DNA cleavage.
    Narula G; Tse-Dinh YC
    Nucleic Acids Res; 2012 Oct; 40(18):9233-43. PubMed ID: 22833607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of DNA topoisomerase I from Mycobacterium tuberculosis: DNA cleavage and religation properties and inhibition of its activity.
    Godbole AA; Leelaram MN; Bhat AG; Jain P; Nagaraja V
    Arch Biochem Biophys; 2012 Dec; 528(2):197-203. PubMed ID: 23085346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-directed mutagenesis of residues involved in G Strand DNA binding by Escherichia coli DNA topoisomerase I.
    Cheng B; Feng J; Mulay V; Gadgil S; Tse-Dinh YC
    J Biol Chem; 2004 Sep; 279(38):39207-13. PubMed ID: 15215234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Fluorescence-Based Assay for Identification of Bacterial Topoisomerase I Poisons.
    Annamalai T; Cheng B; Keswani N; Tse-Dinh YC
    Methods Mol Biol; 2018; 1703():259-268. PubMed ID: 29177747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of active site residues in Escherichia coli DNA topoisomerase I.
    Chen SJ; Wang JC
    J Biol Chem; 1998 Mar; 273(11):6050-6. PubMed ID: 9497321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of catalysis by the smallpox virus topoisomerase.
    Hwang Y; Minkah N; Perry K; Van Duyne GD; Bushman FD
    J Biol Chem; 2006 Dec; 281(49):38052-60. PubMed ID: 17032643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of RuvABC and RecG involvement in the escherichia coli response to the covalent topoisomerase-DNA complex.
    Sutherland JH; Tse-Dinh YC
    J Bacteriol; 2010 Sep; 192(17):4445-51. PubMed ID: 20601468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexibility at Gly-194 is required for DNA cleavage and relaxation activity of Escherichia coli DNA topoisomerase I.
    Cheng B; Feng J; Gadgil S; Tse-Dinh YC
    J Biol Chem; 2004 Mar; 279(10):8648-54. PubMed ID: 14711811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of DNA transesterification by vaccinia topoisomerase: catalytic contributions of essential residues Arg-130, Gly-132, Tyr-136 and Lys-167.
    Wittschieben J; Shuman S
    Nucleic Acids Res; 1997 Aug; 25(15):3001-8. PubMed ID: 9224599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutational analysis of 39 residues of vaccinia DNA topoisomerase identifies Lys-220, Arg-223, and Asn-228 as important for covalent catalysis.
    Cheng C; Wang LK; Sekiguchi J; Shuman S
    J Biol Chem; 1997 Mar; 272(13):8263-9. PubMed ID: 9079646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The type IA topoisomerase catalytic cycle: A normal mode analysis and molecular dynamics simulation.
    Xiong B; Burk DL; Shen J; Luo X; Liu H; Shen J; Berghuis AM
    Proteins; 2008 Jun; 71(4):1984-94. PubMed ID: 18186484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.