These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 21478174)

  • 1. Tree girdling responses simulated by a water and carbon transport model.
    De Schepper V; Steppe K
    Ann Bot; 2011 Oct; 108(6):1147-54. PubMed ID: 21478174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localized stem chilling alters carbon processes in the adjacent stem and in source leaves.
    De Schepper V; Vanhaecke L; Steppe K
    Tree Physiol; 2011 Nov; 31(11):1194-203. PubMed ID: 22001166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbohydrate regulation of photosynthesis and respiration from branch girdling in four species of wet tropical rain forest trees.
    Asao S; Ryan MG
    Tree Physiol; 2015 Jun; 35(6):608-20. PubMed ID: 25870320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of leaf gas exchange, xylem and phloem transport, water potential and carbohydrate concentration in a realistic 3-D model tree crown.
    Nikinmaa E; Sievänen R; Hölttä T
    Ann Bot; 2014 Sep; 114(4):653-66. PubMed ID: 24854169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of carbohydrate supply on stem growth, wood and respired CO2 delta13C: assessment by experimental girdling.
    Maunoury-Danger F; Fresneau C; Eglin T; Berveiller D; François C; Lelarge-Trouverie C; Damesin C
    Tree Physiol; 2010 Jul; 30(7):818-30. PubMed ID: 20504776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and verification of a water and sugar transport model using measured stem diameter variations.
    De Schepper V; Steppe K
    J Exp Bot; 2010 May; 61(8):2083-99. PubMed ID: 20176887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stem girdling affects the quantity of CO2 transported in xylem as well as CO2 efflux from soil.
    Bloemen J; Agneessens L; Van Meulebroek L; Aubrey DP; McGuire MA; Teskey RO; Steppe K
    New Phytol; 2014 Feb; 201(3):897-907. PubMed ID: 24400900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linking water stress effects on carbon partitioning by introducing a xylem circuit into L-PEACH.
    Da Silva D; Favreau R; Auzmendi I; DeJong TM
    Ann Bot; 2011 Oct; 108(6):1135-45. PubMed ID: 21546432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A potential role for xylem-phloem interactions in the hydraulic architecture of trees: effects of phloem girdling on xylem hydraulic conductance.
    Zwieniecki MA; Melcher PJ; Feild TS; Holbrook NM
    Tree Physiol; 2004 Aug; 24(8):911-7. PubMed ID: 15172841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stem compression reversibly reduces phloem transport in Pinus sylvestris trees.
    Henriksson N; Tarvainen L; Lim H; Tor-Ngern P; Palmroth S; Oren R; Marshall J; Näsholm T
    Tree Physiol; 2015 Oct; 35(10):1075-85. PubMed ID: 26377876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of soil water availability on intra-annual xylem and phloem formation and non-structural carbohydrate pools in stem of Quercus pubescens.
    Gričar J; Zavadlav S; Jyske T; Lavrič M; Laakso T; Hafner P; Eler K; Vodnik D
    Tree Physiol; 2019 Feb; 39(2):222-233. PubMed ID: 30239939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MRI links stem water content to stem diameter variations in transpiring trees.
    De Schepper V; van Dusschoten D; Copini P; Jahnke S; Steppe K
    J Exp Bot; 2012 Apr; 63(7):2645-53. PubMed ID: 22268159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stem girdling manipulates leaf sugar concentrations and anthocyanin expression in sugar maple trees during autumn.
    Murakami PF; Schaberg PG; Shane JB
    Tree Physiol; 2008 Oct; 28(10):1467-73. PubMed ID: 18708328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gradients and dynamics of inner bark and needle osmotic potentials in Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies L. Karst).
    Paljakka T; Jyske T; Lintunen A; Aaltonen H; Nikinmaa E; Hölttä T
    Plant Cell Environ; 2017 Oct; 40(10):2160-2173. PubMed ID: 28671720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manipulating phloem transport affects wood formation but not local nonstructural carbon reserves in an evergreen conifer.
    Rademacher T; Fonti P; LeMoine JM; Fonti MV; Basler D; Chen Y; Friend AD; Seyednasrollah B; Eckes-Shephard AH; Richardson AD
    Plant Cell Environ; 2021 Aug; 44(8):2506-2521. PubMed ID: 34043242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concurrent measurements of change in the bark and xylem diameters of trees reveal a phloem-generated turgor signal.
    Mencuccini M; Hölttä T; Sevanto S; Nikinmaa E
    New Phytol; 2013 Jun; 198(4):1143-1154. PubMed ID: 23517018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bole girdling affects metabolic properties and root, trunk and branch hydraulics of young ponderosa pine trees.
    Domec JC; Pruyn ML
    Tree Physiol; 2008 Oct; 28(10):1493-504. PubMed ID: 18708331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phloem transdifferentiation from immature xylem cells during bark regeneration after girdling in Eucommia ulmoides Oliv.
    Pang Y; Zhang J; Cao J; Yin SY; He XQ; Cui KM
    J Exp Bot; 2008; 59(6):1341-51. PubMed ID: 18375933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of cold-girdling on flows in the transport phloem in Ricinus communis: is mass flow inhibited?
    Peuke AD; Windt C; Van As H
    Plant Cell Environ; 2006 Jan; 29(1):15-25. PubMed ID: 17086749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Significant contribution from foliage-derived ABA in regulating gas exchange in Pinus radiata.
    Mitchell PJ; McAdam SA; Pinkard EA; Brodribb TJ
    Tree Physiol; 2017 Feb; 37(2):236-245. PubMed ID: 28399262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.