These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 21478867)

  • 1. Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst.
    Tedsree K; Li T; Jones S; Chan CW; Yu KM; Bagot PA; Marquis EA; Smith GD; Tsang SC
    Nat Nanotechnol; 2011 May; 6(5):302-7. PubMed ID: 21478867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of Pd-Co-based nanocatalysts and their superior applications in formic acid decomposition and methanol oxidation.
    Qin YL; Liu YC; Liang F; Wang LM
    ChemSusChem; 2015 Jan; 8(2):260-3. PubMed ID: 25504901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient PdNi and PdNi@Pd-catalyzed hydrogen generation via formic acid decomposition at room temperature.
    Qin YL; Wang J; Meng FZ; Wang LM; Zhang XB
    Chem Commun (Camb); 2013 Nov; 49(85):10028-30. PubMed ID: 24045900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen generation at ambient conditions: application in fuel cells.
    Boddien A; Loges B; Junge H; Beller M
    ChemSusChem; 2008; 1(8-9):751-8. PubMed ID: 18686291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrocatalytic Oxidation of Formic Acid in an Alkaline Solution with Graphene-Oxide- Supported Ag and Pd Alloy Nanoparticles.
    Han HS; Yun M; Jeong H; Jeon S
    J Nanosci Nanotechnol; 2015 Aug; 15(8):5699-705. PubMed ID: 26369141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Platinum and palladium nano-structured catalysts for polymer electrolyte fuel cells and direct methanol fuel cells.
    Long NV; Thi CM; Yong Y; Nogami M; Ohtaki M
    J Nanosci Nanotechnol; 2013 Jul; 13(7):4799-824. PubMed ID: 23901503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Available hydrogen from formic acid decomposed by rare earth elements promoted Pd-Au/C catalysts at low temperature.
    Zhou X; Huang Y; Liu C; Liao J; Lu T; Xing W
    ChemSusChem; 2010 Dec; 3(12):1379-82. PubMed ID: 21064176
    [No Abstract]   [Full Text] [Related]  

  • 8. Density functional theory study on the adsorption and decomposition of the formic acid catalyzed by highly active mushroom-like Au@Pd@Pt tri-metallic nanoparticles.
    Duan S; Ji YF; Fang PP; Chen YX; Xu X; Luo Y; Tian ZQ
    Phys Chem Chem Phys; 2013 Apr; 15(13):4625-33. PubMed ID: 23423429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly efficient hydrogen storage system based on ammonium bicarbonate/formate redox equilibrium over palladium nanocatalysts.
    Su J; Yang L; Lu M; Lin H
    ChemSusChem; 2015 Mar; 8(5):813-6. PubMed ID: 25663262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hollow Ag@Pd core-shell nanotubes as highly active catalysts for the electro-oxidation of formic acid.
    Jiang Y; Lu Y; Han D; Zhang Q; Niu L
    Nanotechnology; 2012 Mar; 23(10):105609. PubMed ID: 22361468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A facile synthesis of MPd (M = Co, Cu) nanoparticles and their catalysis for formic acid oxidation.
    Mazumder V; Chi M; Mankin MN; Liu Y; Metin Ö; Sun D; More KL; Sun S
    Nano Lett; 2012 Feb; 12(2):1102-6. PubMed ID: 22276672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amino-functionalized graphene oxide-supported networked Pd-Ag nanowires as highly efficient catalyst for reducing Cr(VI) in industrial effluent by formic acid.
    Bao S; Liu H; Liu Y; Yang W; Wang Y; Yu Y; Sun Y; Li K
    Chemosphere; 2020 Oct; 257():127245. PubMed ID: 32505944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalysis: acidic ideas for hydrogen storage.
    Boddien A; Junge H
    Nat Nanotechnol; 2011 May; 6(5):265-6. PubMed ID: 21546899
    [No Abstract]   [Full Text] [Related]  

  • 14. Natural DNA-modified graphene/Pd nanoparticles as highly active catalyst for formic acid electro-oxidation and for the Suzuki reaction.
    Qu K; Wu L; Ren J; Qu X
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):5001-9. PubMed ID: 22973944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors Influencing the Performance of Pd/C Catalysts in the Green Production of Hydrogen from Formic Acid.
    Zacharska M; Bulusheva LG; Lisitsyn AS; Beloshapkin S; Guo Y; Chuvilin AL; Shlyakhova EV; Podyacheva OY; Leahy JJ; Okotrub AV; Bulushev DA
    ChemSusChem; 2017 Feb; 10(4):720-730. PubMed ID: 27996206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and assembly of Pd nanoparticles on graphene for enhanced electrooxidation of formic acid.
    Jin T; Guo S; Zuo JL; Sun S
    Nanoscale; 2013 Jan; 5(1):160-3. PubMed ID: 23172252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape-dependent electrocatalytic activity of monodispersed palladium nanocrystals toward formic acid oxidation.
    Zhang X; Yin H; Wang J; Chang L; Gao Y; Liu W; Tang Z
    Nanoscale; 2013 Sep; 5(18):8392-7. PubMed ID: 23884237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of lattice strain on the catalytic properties of Pd nanocrystals.
    Kuo CH; Lamontagne LK; Brodsky CN; Chou LY; Zhuang J; Sneed BT; Sheehan MK; Tsung CK
    ChemSusChem; 2013 Oct; 6(10):1993-2000. PubMed ID: 24106237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shaping Pd nanocatalysts through the control of reaction sequence.
    Lee YW; Kim M; Han SW
    Chem Commun (Camb); 2010 Mar; 46(9):1535-7. PubMed ID: 20162173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphology and lateral strain control of Pt nanoparticles via core-shell construction using alloy AgPd core toward oxygen reduction reaction.
    Yang J; Yang J; Ying JY
    ACS Nano; 2012 Nov; 6(11):9373-82. PubMed ID: 23061786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.