These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 21478867)

  • 41. Facile synthesis of palladium right bipyramids and their use as seeds for overgrowth and as catalysts for formic acid oxidation.
    Xia X; Choi SI; Herron JA; Lu N; Scaranto J; Peng HC; Wang J; Mavrikakis M; Kim MJ; Xia Y
    J Am Chem Soc; 2013 Oct; 135(42):15706-9. PubMed ID: 24106797
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Investigation on the morphological and optical evolution of bimetallic Pd-Ag nanoparticles on sapphire (0001) by the systematic control of composition, annealing temperature and time.
    Pandey P; Kunwar S; Sui M; Bastola S; Lee J
    PLoS One; 2017; 12(12):e0189823. PubMed ID: 29253017
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Simple fabrication of a Pd-P film on a polymer membrane and its catalytic applications.
    Byeon JH; Kim YW
    ACS Appl Mater Interfaces; 2011 Aug; 3(8):2912-8. PubMed ID: 21736292
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Controlled generation of hydrogen from formic acid amine adducts at room temperature and application in H2/O2 fuel cells.
    Loges B; Boddien A; Junge H; Beller M
    Angew Chem Int Ed Engl; 2008; 47(21):3962-5. PubMed ID: 18457345
    [No Abstract]   [Full Text] [Related]  

  • 45. Monodisperse Ag/Pd core/shell nanoparticles assembled on reduced graphene oxide as highly efficient catalysts for the transfer hydrogenation of nitroarenes.
    Metin Ö; Can H; Şendil K; Gültekin MS
    J Colloid Interface Sci; 2017 Jul; 498():378-386. PubMed ID: 28343135
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ionic liquid assisted synthesis of Au-Pd bimetallic particles with enhanced electrocatalytic activity.
    Li Z; Li R; Mu T; Luan Y
    Chemistry; 2013 May; 19(19):6005-13. PubMed ID: 23471860
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mitigation of Cr(VI) toxicity using Pd-nanoparticles immobilized catalytic reactor (Pd-NICaR) fabricated via plasma and gamma radiation.
    Misra N; Kumar V; Rawat S; Goel NK; Shelkar SA; Jagannath ; Singhal RK; Varshney L
    Environ Sci Pollut Res Int; 2018 Jun; 25(16):16101-16110. PubMed ID: 29594904
    [TBL] [Abstract][Full Text] [Related]  

  • 48. One-pot synthesis of intermetallic electrocatalysts in ordered, large-pore mesoporous carbon/silica toward formic acid oxidation.
    Shim J; Lee J; Ye Y; Hwang J; Kim SK; Lim TH; Wiesner U; Lee J
    ACS Nano; 2012 Aug; 6(8):6870-81. PubMed ID: 22800174
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of a highly active electrocatalyst via ultrafine Pd nanoparticles dispersed on pristine graphene.
    Zhao J; Liu Z; Li H; Hu W; Zhao C; Zhao P; Shi D
    Langmuir; 2015 Mar; 31(8):2576-83. PubMed ID: 25692321
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Catalytic activity of Pd-doped Cu nanoparticles for hydrogenation as a single-atom-alloy catalyst.
    Cao X; Fu Q; Luo Y
    Phys Chem Chem Phys; 2014 May; 16(18):8367-75. PubMed ID: 24658397
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Towards a practical setup for hydrogen production from formic acid.
    Sponholz P; Mellmann D; Junge H; Beller M
    ChemSusChem; 2013 Jul; 6(7):1172-6. PubMed ID: 23757329
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A prolific catalyst for dehydrogenation of neat formic acid.
    Celaje JJ; Lu Z; Kedzie EA; Terrile NJ; Lo JN; Williams TJ
    Nat Commun; 2016 Apr; 7():11308. PubMed ID: 27076111
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Au-Pd core-shell nanoparticles as alcohol oxidation catalysts: effect of shape and composition.
    Cheong S; Graham L; Brett GL; Henning AM; Watt J; Miedziak PJ; Song M; Takeda Y; Taylor SH; Tilley RD
    ChemSusChem; 2013 Oct; 6(10):1858-62. PubMed ID: 24006241
    [No Abstract]   [Full Text] [Related]  

  • 54. Controlling alloy to core-shell structure transformation of Au-Pd icosahedral nanoparticles.
    Chen Y; Zeng X; Liu Y; Ye R; Liang Q; Hu J
    Chem Commun (Camb); 2021 Sep; 57(74):9410-9413. PubMed ID: 34528951
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Efficient catalytic decomposition of formic acid for the selective generation of H2 and H/D exchange with a water-soluble rhodium complex in aqueous solution.
    Fukuzumi S; Kobayashi T; Suenobu T
    ChemSusChem; 2008; 1(10):827-34. PubMed ID: 18846597
    [TBL] [Abstract][Full Text] [Related]  

  • 56. pH-dependent catalytic properties of Pd-Ag nanoparticles in luminol chemiluminescence.
    Li N; Wang W; Tian D; Cui H
    Chem Commun (Camb); 2010 Mar; 46(9):1520-2. PubMed ID: 20162168
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Facile synthesis of nitrogen-doped graphene supported AuPd-CeO2 nanocomposites with high-performance for hydrogen generation from formic acid at room temperature.
    Wang ZL; Yan JM; Zhang YF; Ping Y; Wang HL; Jiang Q
    Nanoscale; 2014 Mar; 6(6):3073-7. PubMed ID: 24526095
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Aggregates of the pentacenequinone derivative as reactors for the preparation of Ag@Cu2O core-shell NPs: an active photocatalyst for Suzuki and Suzuki type coupling reactions.
    Sharma K; Kumar M; Bhalla V
    Chem Commun (Camb); 2015 Aug; 51(63):12529-32. PubMed ID: 26151737
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Use of formic acid as reducing agent for application in catalytic reduction of nitrate in water.
    Garron A; Epron F
    Water Res; 2005 Aug; 39(13):3073-81. PubMed ID: 15982701
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pt@Ag and Pd@Ag core/shell nanoparticles for catalytic degradation of Congo red in aqueous solution.
    Salem MA; Bakr EA; El-Attar HG
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 188():155-163. PubMed ID: 28709141
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.