These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 21479027)

  • 1. Comparison of the behavior of a subwavelength diffractive lens in TE and TM polarization allowing some nonstandard functions.
    Raulot V; Gérard P; Serio B; Flury M; Meyrueis P
    Opt Lett; 2011 Apr; 36(7):1194-6. PubMed ID: 21479027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of the angular tolerancing of an effective medium diffractive lens using combined finite difference time domain and radiation spectrum method algorithms.
    Raulot V; Gérard P; Serio B; Flury M; Kress B; Meyrueis P
    Opt Express; 2010 Aug; 18(17):17974-82. PubMed ID: 20721184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of binary diffractive microlenses with subwavelength structures using the genetic algorithm.
    Shirakawa T; Ishikawa KL; Suzuki S; Yamada Y; Takahashi H
    Opt Express; 2010 Apr; 18(8):8383-91. PubMed ID: 20588683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase function encoding of diffractive structures.
    Schilling A; Herzig HP
    Appl Opt; 2000 Oct; 39(29):5273-9. PubMed ID: 18354523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colour characterization of a Morpho butterfly wing-scale using a high accuracy nonstandard finite-difference time-domain method.
    Banerjee S; Cole JB; Yatagai T
    Micron; 2007; 38(2):97-103. PubMed ID: 16942885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collimating cylindrical diffractive lenses: rigorous electromagnetic analysis and scalar approximation.
    Glytsis EN; Harrigan ME; Hirayama K; Gaylord TK
    Appl Opt; 1998 Jan; 37(1):34-43. PubMed ID: 18268557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal nanoslit lenses with polarization-selective design.
    Ishii S; Kildishev AV; Shalaev VM; Chen KP; Drachev VP
    Opt Lett; 2011 Feb; 36(4):451-3. PubMed ID: 21326419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rigorous electromagnetic design of finite-aperture diffractive optical elements by use of an iterative optimization algorithm.
    Di F; Yingbai Y; Guofan J; Qiaofeng T; Liu H
    J Opt Soc Am A Opt Image Sci Vis; 2003 Sep; 20(9):1739-46. PubMed ID: 12968646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable subwavelength focusing with dispersion-engineered metamaterials in the terahertz regime.
    Lee J; Lee K; Park H; Kang G; Yu DH; Kim K
    Opt Lett; 2010 Jul; 35(13):2254-6. PubMed ID: 20596211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffractive lens design for optimized focusing.
    Wan X; Shen B; Menon R
    J Opt Soc Am A Opt Image Sci Vis; 2014 Dec; 31(12):B27-33. PubMed ID: 25606777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling the contribution of the electric field components to the focus of a high-aperture lens using binary phase structures.
    Khonina SN; Volotovsky SG
    J Opt Soc Am A Opt Image Sci Vis; 2010 Oct; 27(10):2188-97. PubMed ID: 20922009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarization insensitive resonance-domain blazed binary gratings.
    Hyvärinen HJ; Karvinen P; Turunen J
    Opt Express; 2010 Jun; 18(13):13444-50. PubMed ID: 20588475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffractive efficiency improvement of diffractive cylinder lenses by Gaussian-beam illumination.
    Fuerer F; Schmidt M; Bryngdahl O
    Opt Express; 1997 Oct; 1(8):234-9. PubMed ID: 19373407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of low F-number dual micro-axilens array with binary structures by rigorous electromagnetic theory.
    Feng D; Feng LS; Zhang CX
    Opt Express; 2011 May; 19(11):10959-66. PubMed ID: 21643356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-collimating photonic crystal antireflection structure for both TE and TM polarizations.
    Park JM; Lee SG; Park HR; Lee MH
    Opt Express; 2010 Jun; 18(12):13083-93. PubMed ID: 20588438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-dimensional point spread matrix of layered metal-dielectric imaging elements.
    Kotyński R; Antosiewicz TJ; Król K; Panajotov K
    J Opt Soc Am A Opt Image Sci Vis; 2011 Feb; 28(2):111-7. PubMed ID: 21293516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polarization dependence of the quasi-Talbot effect of the high-density grating.
    Teng S; Guo W; Cheng C
    J Opt Soc Am A Opt Image Sci Vis; 2010 Mar; 27(3):366-71. PubMed ID: 20208924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Demonstration of an elliptical plasmonic lens illuminated with radially-like polarized field.
    Lerman GM; Yanai A; Ben-Yosef N; Levy U
    Opt Express; 2010 May; 18(10):10871-7. PubMed ID: 20588942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rigorous theory of the diffraction of Gaussian beams by finite gratings: TM polarization.
    Mata-Mendez O; Avendaño J; Chavez-Rivas F
    J Opt Soc Am A Opt Image Sci Vis; 2006 Aug; 23(8):1889-96. PubMed ID: 16835646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Limits of scalar diffraction theory and an iterative angular spectrum algorithm for finite aperture diffractive optical element design.
    Mellin S; Nordin G
    Opt Express; 2001 Jun; 8(13):705-22. PubMed ID: 19421262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.