These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83 related articles for article (PubMed ID: 21479294)
1. Selenium effects on arsenic cytotoxicity and protein phosphorylation in human kidney cells using chip-based nanoLC-MS/MS. Alp O; Zhang Y; Merino EJ; Caruso JA Metallomics; 2011 May; 3(5):482-90. PubMed ID: 21479294 [TBL] [Abstract][Full Text] [Related]
3. Identification of selenium-containing proteins in HEK 293 kidney cells using multiple chromatographies, LC-ICPMS and nano-LC-ESIMS. Chitta KR; Landero-Figueroa JA; Kodali P; Caruso JA; Merino EJ Talanta; 2013 Sep; 114():25-31. PubMed ID: 23953436 [TBL] [Abstract][Full Text] [Related]
4. Arsenic-induced protein phosphorylation changes in HeLa cells. Alp O; Merino EJ; Caruso JA Anal Bioanal Chem; 2010 Nov; 398(5):2099-107. PubMed ID: 20803194 [TBL] [Abstract][Full Text] [Related]
5. Identification of Leishmania-specific protein phosphorylation sites by LC-ESI-MS/MS and comparative genomics analyses. Hem S; Gherardini PF; Osorio y Fortéa J; Hourdel V; Morales MA; Watanabe R; Pescher P; Kuzyk MA; Smith D; Borchers CH; Zilberstein D; Helmer-Citterich M; Namane A; Späth GF Proteomics; 2010 Nov; 10(21):3868-83. PubMed ID: 20960452 [TBL] [Abstract][Full Text] [Related]
6. Identification of phosphoproteins and determination of phosphorylation sites by zirconium dioxide enrichment and SELDI-MS/MS. Cuccurullo M; Schlosser G; Cacace G; Malorni L; Pocsfalvi G J Mass Spectrom; 2007 Aug; 42(8):1069-78. PubMed ID: 17610310 [TBL] [Abstract][Full Text] [Related]
7. Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Pinkse MW; Uitto PM; Hilhorst MJ; Ooms B; Heck AJ Anal Chem; 2004 Jul; 76(14):3935-43. PubMed ID: 15253627 [TBL] [Abstract][Full Text] [Related]
8. Adaptation of proteomic techniques for the identification and characterization of protein species from murine heart. Schwab K; Neumann B; Scheler C; Jungblut PR; Theuring F Amino Acids; 2011 Jul; 41(2):401-14. PubMed ID: 20607322 [TBL] [Abstract][Full Text] [Related]
9. Identification of phosphorylated proteins from thrombin-activated human platelets isolated by two-dimensional gel electrophoresis by electrospray ionization-tandem mass spectrometry (ESI-MS/MS) and liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). Immler D; Gremm D; Kirsch D; Spengler B; Presek P; Meyer HE Electrophoresis; 1998 May; 19(6):1015-23. PubMed ID: 9638948 [TBL] [Abstract][Full Text] [Related]
10. Analysis of the subcellular phosphoproteome using a novel phosphoproteomic reactor. Zhou H; Elisma F; Denis NJ; Wright TG; Tian R; Zhou H; Hou W; Zou H; Figeys D J Proteome Res; 2010 Mar; 9(3):1279-88. PubMed ID: 20067319 [TBL] [Abstract][Full Text] [Related]
11. Phosphoproteomics by mass spectrometry and classical protein chemistry approaches. Salih E Mass Spectrom Rev; 2005; 24(6):828-46. PubMed ID: 15538747 [TBL] [Abstract][Full Text] [Related]
12. Phosphorylation of extracellular matrix tenascin-X detected by differential mass tagging followed by nanoLC-MALDI-TOF/TOF-MS/MS using ProteinPilot software. Matsumoto K Connect Tissue Res; 2012; 53(2):106-16. PubMed ID: 21967672 [TBL] [Abstract][Full Text] [Related]
13. Exploring the human leukocyte phosphoproteome using a microfluidic reversed-phase-TiO2-reversed-phase high-performance liquid chromatography phosphochip coupled to a quadrupole time-of-flight mass spectrometer. Raijmakers R; Kraiczek K; de Jong AP; Mohammed S; Heck AJ Anal Chem; 2010 Feb; 82(3):824-32. PubMed ID: 20058876 [TBL] [Abstract][Full Text] [Related]
14. Phosphoproteome profiling of human skin fibroblast cells in response to low- and high-dose irradiation. Yang F; Stenoien DL; Strittmatter EF; Wang J; Ding L; Lipton MS; Monroe ME; Nicora CD; Gristenko MA; Tang K; Fang R; Adkins JN; Camp DG; Chen DJ; Smith RD J Proteome Res; 2006 May; 5(5):1252-60. PubMed ID: 16674116 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous identification and quantification of proteins by differential (16)O/(18)O labeling and UPLC-MS/MS applied to mouse cerebellar phosphoproteome following irradiation. Winter D; Seidler J; Ziv-Lehrman S; Shiloh Y; Lehmann WD Anticancer Res; 2009 Dec; 29(12):4949-58. PubMed ID: 20044601 [TBL] [Abstract][Full Text] [Related]
16. Extended Range Proteomic Analysis (ERPA): a new and sensitive LC-MS platform for high sequence coverage of complex proteins with extensive post-translational modifications-comprehensive analysis of beta-casein and epidermal growth factor receptor (EGFR). Wu SL; Kim J; Hancock WS; Karger B J Proteome Res; 2005; 4(4):1155-70. PubMed ID: 16083266 [TBL] [Abstract][Full Text] [Related]
17. Ultralow-volume fraction collection from NanoLC columns for mass spectrometric analysis of protein phosphorylation and glycosylation. Corso TN; Van Pelt CK; Li J; Ptak C; Huang X Anal Chem; 2006 Apr; 78(7):2209-19. PubMed ID: 16579599 [TBL] [Abstract][Full Text] [Related]
18. Phosphoproteome analysis of human liver tissue by long-gradient nanoflow LC coupled with multiple stage MS analysis. Han G; Ye M; Liu H; Song C; Sun D; Wu Y; Jiang X; Chen R; Wang C; Wang L; Zou H Electrophoresis; 2010 Mar; 31(6):1080-9. PubMed ID: 20166139 [TBL] [Abstract][Full Text] [Related]
19. Robust enrichment of phosphorylated species in complex mixtures by sequential protein and peptide metal-affinity chromatography and analysis by tandem mass spectrometry. Collins MO; Yu L; Husi H; Blackstock WP; Choudhary JS; Grant SG Sci STKE; 2005 Aug; 2005(298):pl6. PubMed ID: 16118397 [TBL] [Abstract][Full Text] [Related]
20. Phosphoproteome analysis of the pathogenic bacterium Helicobacter pylori reveals over-representation of tyrosine phosphorylation and multiply phosphorylated proteins. Ge R; Sun X; Xiao C; Yin X; Shan W; Chen Z; He QY Proteomics; 2011 Apr; 11(8):1449-61. PubMed ID: 21360674 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]