These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 21479543)
1. Three-dimensional on-chip continuous-flow polymerase chain reaction employing a single heater. Wu W; Lee NY Anal Bioanal Chem; 2011 Jun; 400(7):2053-60. PubMed ID: 21479543 [TBL] [Abstract][Full Text] [Related]
2. Flow-through PCR on a 3D qiandu-shaped polydimethylsiloxane (PDMS) microdevice employing a single heater: toward microscale multiplex PCR. Wu W; Loan KT; Lee NY Analyst; 2012 May; 137(9):2069-76. PubMed ID: 22434151 [TBL] [Abstract][Full Text] [Related]
3. Real time PCR on disposable PDMS chip with a miniaturized thermal cycler. Xiang Q; Xu B; Fu R; Li D Biomed Microdevices; 2005 Dec; 7(4):273-9. PubMed ID: 16404505 [TBL] [Abstract][Full Text] [Related]
4. Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems. Erickson D; Sinton D; Li D Lab Chip; 2003 Aug; 3(3):141-9. PubMed ID: 15100765 [TBL] [Abstract][Full Text] [Related]
5. Analytical study of a microfludic DNA amplification chip using water cooling effect. Chen JJ; Shen CM; Ko YW Biomed Microdevices; 2013 Apr; 15(2):261-78. PubMed ID: 23179465 [TBL] [Abstract][Full Text] [Related]
6. One-heater flow-through polymerase chain reaction device by heat pipes cooling. Chen JJ; Liao MH; Li KT; Shen CM Biomicrofluidics; 2015 Jan; 9(1):014107. PubMed ID: 25713689 [TBL] [Abstract][Full Text] [Related]
7. Bubble-free on-chip continuous-flow polymerase chain reaction: concept and application. Wu W; Kang KT; Lee NY Analyst; 2011 Jun; 136(11):2287-93. PubMed ID: 21461443 [TBL] [Abstract][Full Text] [Related]
8. Battery Powered Portable Thermal Cycler for Continuous-Flow Polymerase Chain Reaction Diagnosis by Single Thermostatic Thermoelectric Cooler and Open-Loop Controller. Wu D; Wu W Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30987195 [TBL] [Abstract][Full Text] [Related]
9. Integration of gene amplification and capillary gel electrophoresis on a polydimethylsiloxane-glass hybrid microchip. Hong JW; Fujii T; Seki M; Yamamoto T; Endo I Electrophoresis; 2001 Jan; 22(2):328-33. PubMed ID: 11288901 [TBL] [Abstract][Full Text] [Related]
10. Temperature distribution effects on micro-CFPCR performance. Chen PC; Nikitopoulos DE; Soper SA; Murphy MC Biomed Microdevices; 2008 Apr; 10(2):141-52. PubMed ID: 17896180 [TBL] [Abstract][Full Text] [Related]
11. A poly(dimethylsiloxane) microfluidic sheet reversibly adhered on a glass plate for creation of emulsion droplets for droplet digital PCR. Nakashoji Y; Tanaka H; Tsukagoshi K; Hashimoto M Electrophoresis; 2017 Jan; 38(2):296-304. PubMed ID: 27568642 [TBL] [Abstract][Full Text] [Related]
12. Portable low-power thermal cycler with dual thin-film Pt heaters for a polymeric PCR chip. Jeong S; Lim J; Kim MY; Yeom J; Cho H; Lee H; Shin YB; Lee JH Biomed Microdevices; 2018 Jan; 20(1):14. PubMed ID: 29376193 [TBL] [Abstract][Full Text] [Related]
13. Microfabricated device for DNA and RNA amplification by continuous-flow polymerase chain reaction and reverse transcription-polymerase chain reaction with cycle number selection. Obeid PJ; Christopoulos TK; Crabtree HJ; Backhouse CJ Anal Chem; 2003 Jan; 75(2):288-95. PubMed ID: 12553764 [TBL] [Abstract][Full Text] [Related]
14. A functionally integrated thermoplastic microdevice for one-step solid-phase-based nucleic acid purification and isothermal amplification for facile detection of foodborne pathogen. Ha ML; Zhang Y; Lee NY Biotechnol Bioeng; 2016 Dec; 113(12):2614-2623. PubMed ID: 27260386 [TBL] [Abstract][Full Text] [Related]
15. Hand-held syringe as a portable plastic pump for on-chip continuous-flow PCR: miniaturization of sample injection device. Wu W; Trinh KT; Lee NY Analyst; 2012 Feb; 137(4):983-90. PubMed ID: 22186958 [TBL] [Abstract][Full Text] [Related]
17. An integrated PCR microfluidic chip incorporating aseptic electrochemical cell lysis and capillary electrophoresis amperometric DNA detection for rapid and quantitative genetic analysis. Jha SK; Chand R; Han D; Jang YC; Ra GS; Kim JS; Nahm BH; Kim YS Lab Chip; 2012 Nov; 12(21):4455-64. PubMed ID: 22960653 [TBL] [Abstract][Full Text] [Related]
18. Performing microchannel temperature cycling reactions using reciprocating reagent shuttling along a radial temperature gradient. Cheng JY; Hsieh CJ; Chuang YC; Hsieh JR Analyst; 2005 Jun; 130(6):931-40. PubMed ID: 15912243 [TBL] [Abstract][Full Text] [Related]
19. A rigid poly(dimethylsiloxane) sandwich electrophoresis microchip based on thin-casting method. Liu C; Cui D; Cai H; Chen X; Geng Z Electrophoresis; 2006 Jul; 27(14):2917-23. PubMed ID: 16721901 [TBL] [Abstract][Full Text] [Related]
20. Hot embossing and thermal bonding of poly(methyl methacrylate) microfluidic chips using positive temperature coefficient ceramic heater. Wang X; Zhang L; Chen G Anal Bioanal Chem; 2011 Nov; 401(8):2657-65. PubMed ID: 21922306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]