BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 21479633)

  • 1. Dihydroartemisinin inhibits angiogenesis in pancreatic cancer by targeting the NF-κB pathway.
    Wang SJ; Sun B; Cheng ZX; Zhou HX; Gao Y; Kong R; Chen H; Jiang HC; Pan SH; Xue DB; Bai XW
    Cancer Chemother Pharmacol; 2011 Dec; 68(6):1421-30. PubMed ID: 21479633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dihydroartemisinin targets VEGFR2 via the NF-κB pathway in endothelial cells to inhibit angiogenesis.
    Dong F; Zhou X; Li C; Yan S; Deng X; Cao Z; Li L; Tang B; Allen TD; Liu J
    Cancer Biol Ther; 2014; 15(11):1479-88. PubMed ID: 25482945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteasome inhibitor MG132 inhibits angiogenesis in pancreatic cancer by blocking NF-kappaB activity.
    Matsuo Y; Sawai H; Ochi N; Yasuda A; Sakamoto M; Takahashi H; Funahashi H; Takeyama H; Guha S
    Dig Dis Sci; 2010 Apr; 55(4):1167-76. PubMed ID: 19399612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth inhibitory effects of dihydroartemisinin on pancreatic cancer cells: involvement of cell cycle arrest and inactivation of nuclear factor-kappaB.
    Chen H; Sun B; Wang S; Pan S; Gao Y; Bai X; Xue D
    J Cancer Res Clin Oncol; 2010 Jun; 136(6):897-903. PubMed ID: 19941148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xanthohumol inhibits angiogenesis by suppressing nuclear factor-κB activation in pancreatic cancer.
    Saito K; Matsuo Y; Imafuji H; Okubo T; Maeda Y; Sato T; Shamoto T; Tsuboi K; Morimoto M; Takahashi H; Ishiguro H; Takiguchi S
    Cancer Sci; 2018 Jan; 109(1):132-140. PubMed ID: 29121426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dihydroartemisinin inactivates NF-kappaB and potentiates the anti-tumor effect of gemcitabine on pancreatic cancer both in vitro and in vivo.
    Wang SJ; Gao Y; Chen H; Kong R; Jiang HC; Pan SH; Xue DB; Bai XW; Sun B
    Cancer Lett; 2010 Jul; 293(1):99-108. PubMed ID: 20137856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antiangiogenic effects of oxymatrine on pancreatic cancer by inhibition of the NF-κB-mediated VEGF signaling pathway.
    Chen H; Zhang J; Luo J; Lai F; Wang Z; Tong H; Lu D; Bu H; Zhang R; Lin S
    Oncol Rep; 2013 Aug; 30(2):589-95. PubMed ID: 23754270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zerumbone inhibits angiogenesis by blocking NF-κB activity in pancreatic cancer.
    Shamoto T; Matsuo Y; Shibata T; Tsuboi K; Nagasaki T; Takahashi H; Funahashi H; Okada Y; Takeyama H
    Pancreas; 2014 Apr; 43(3):396-404. PubMed ID: 24622069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. OSU-A9 inhibits angiogenesis in human umbilical vein endothelial cells via disrupting Akt-NF-κB and MAPK signaling pathways.
    Omar HA; Arafa el-SA; Salama SA; Arab HH; Wu CH; Weng JR
    Toxicol Appl Pharmacol; 2013 Nov; 272(3):616-24. PubMed ID: 23921148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dihydroartemisinin inhibits angiogenesis in breast cancer via regulating VEGF and MMP-2/-9.
    Rao Q; Yu H; Li R; He B; Wang Y; Guo X; Zhao G; Wu F
    Fundam Clin Pharmacol; 2024 Feb; 38(1):113-125. PubMed ID: 37490927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liposome-encapsulated curcumin: in vitro and in vivo effects on proliferation, apoptosis, signaling, and angiogenesis.
    Li L; Braiteh FS; Kurzrock R
    Cancer; 2005 Sep; 104(6):1322-31. PubMed ID: 16092118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dihydroartemisinin inhibits growth of pancreatic cancer cells in vitro and in vivo.
    Chen H; Sun B; Pan S; Jiang H; Sun X
    Anticancer Drugs; 2009 Feb; 20(2):131-40. PubMed ID: 19209030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dihydroartemisinin Increases the Sensitivity of Photodynamic Therapy Via NF-κB/HIF-1α/VEGF Pathway in Esophageal Cancer Cell in vitro and in vivo.
    Li Y; Sui H; Jiang C; Li S; Han Y; Huang P; Du X; Du J; Bai Y
    Cell Physiol Biochem; 2018; 48(5):2035-2045. PubMed ID: 30099443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of angiogenesis and invasion by 3,3'-diindolylmethane is mediated by the nuclear factor-kappaB downstream target genes MMP-9 and uPA that regulated bioavailability of vascular endothelial growth factor in prostate cancer.
    Kong D; Li Y; Wang Z; Banerjee S; Sarkar FH
    Cancer Res; 2007 Apr; 67(7):3310-9. PubMed ID: 17409440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triptolide induces apoptosis and inhibits the growth and angiogenesis of human pancreatic cancer cells by downregulating COX-2 and VEGF.
    Ma JX; Sun YL; Wang YQ; Wu HY; Jin J; Yu XF
    Oncol Res; 2013; 20(8):359-68. PubMed ID: 23924856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Down-regulation of platelet-derived growth factor-D inhibits cell growth and angiogenesis through inactivation of Notch-1 and nuclear factor-kappaB signaling.
    Wang Z; Kong D; Banerjee S; Li Y; Adsay NV; Abbruzzese J; Sarkar FH
    Cancer Res; 2007 Dec; 67(23):11377-85. PubMed ID: 18056465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antiangiogenic effects of a novel synthetic curcumin analogue in pancreatic cancer.
    Nagaraju GP; Zhu S; Ko JE; Ashritha N; Kandimalla R; Snyder JP; Shoji M; El-Rayes BF
    Cancer Lett; 2015 Feb; 357(2):557-65. PubMed ID: 25497868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antiangiogenic Potential of Microbial Metabolite Elaiophylin for Targeting Tumor Angiogenesis.
    Lim HN; Jang JP; Han JM; Jang JH; Ahn JS; Jung HJ
    Molecules; 2018 Mar; 23(3):. PubMed ID: 29498688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nafamostat mesilate can prevent adhesion, invasion and peritoneal dissemination of pancreatic cancer thorough nuclear factor kappa-B inhibition.
    Fujiwara Y; Furukawa K; Haruki K; Shimada Y; Iida T; Shiba H; Uwagawa T; Ohashi T; Yanaga K
    J Hepatobiliary Pancreat Sci; 2011 Sep; 18(5):731-9. PubMed ID: 21484229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of PMA-induced tumor cell invasion by dihydroartemisinin via inhibition of PKCalpha/Raf/MAPKs and NF-kappaB/AP-1-dependent mechanisms.
    Hwang YP; Yun HJ; Kim HG; Han EH; Lee GW; Jeong HG
    Biochem Pharmacol; 2010 Jun; 79(12):1714-26. PubMed ID: 20152819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.