These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 2147971)
21. Splitting the ciliary axoneme: implications for a "switch-point" model of dynein arm activity in ciliary motion. Satir P; Matsuoka T Cell Motil Cytoskeleton; 1989; 14(3):345-58. PubMed ID: 2531043 [TBL] [Abstract][Full Text] [Related]
22. Fifty years of microtubule sliding in cilia. King SM; Sale WS Mol Biol Cell; 2018 Mar; 29(6):698-701. PubMed ID: 29535180 [TBL] [Abstract][Full Text] [Related]
23. Spontaneous oscillation and fluid-structure interaction of cilia. Han J; Peskin CS Proc Natl Acad Sci U S A; 2018 Apr; 115(17):4417-4422. PubMed ID: 29632178 [TBL] [Abstract][Full Text] [Related]
24. Predicting the locations of force-generating dyneins in beating cilia and flagella. Howard J; Chasteen A; Ouyang X; Geyer VF; Sartori P Front Cell Dev Biol; 2022; 10():995847. PubMed ID: 36303602 [TBL] [Abstract][Full Text] [Related]
25. An integrative model of internal axoneme mechanics and external fluid dynamics in ciliary beating. Dillon RH; Fauci LJ J Theor Biol; 2000 Dec; 207(3):415-30. PubMed ID: 11082310 [TBL] [Abstract][Full Text] [Related]
26. Computer simulation of flagellar movement VIII: coordination of dynein by local curvature control can generate helical bending waves. Brokaw CJ Cell Motil Cytoskeleton; 2002 Oct; 53(2):103-24. PubMed ID: 12211108 [TBL] [Abstract][Full Text] [Related]
27. Steady dynein forces induce flutter instability and propagating waves in mathematical models of flagella. Bayly PV; Dutcher SK J R Soc Interface; 2016 Oct; 13(123):. PubMed ID: 27798276 [TBL] [Abstract][Full Text] [Related]
28. On the contribution of dynein-like activity to twisting in a three-dimensional sliding filament model. Hines M; Blum JJ Biophys J; 1985 May; 47(5):705-8. PubMed ID: 3160392 [TBL] [Abstract][Full Text] [Related]
29. Nonlinear dynamics of cilia and flagella. Hilfinger A; Chattopadhyay AK; Jülicher F Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051918. PubMed ID: 19518491 [TBL] [Abstract][Full Text] [Related]
30. Microtubule translocation properties of intact and proteolytically digested dyneins from Tetrahymena cilia. Vale RD; Toyoshima YY J Cell Biol; 1989 Jun; 108(6):2327-34. PubMed ID: 2525562 [TBL] [Abstract][Full Text] [Related]
31. Axoneme Structure from Motile Cilia. Ishikawa T Cold Spring Harb Perspect Biol; 2017 Jan; 9(1):. PubMed ID: 27601632 [TBL] [Abstract][Full Text] [Related]
32. Metachronal motion of artificial magnetic cilia. Hanasoge S; Hesketh PJ; Alexeev A Soft Matter; 2018 May; 14(19):3689-3693. PubMed ID: 29737998 [TBL] [Abstract][Full Text] [Related]
33. Rotation and translocation of microtubules in vitro induced by dyneins from Tetrahymena cilia. Vale RD; Toyoshima YY Cell; 1988 Feb; 52(3):459-69. PubMed ID: 2964278 [TBL] [Abstract][Full Text] [Related]
34. Fluid dynamic models of flagellar and ciliary beating. Dillon RH; Fauci LJ; Omoto C; Yang X Ann N Y Acad Sci; 2007 Apr; 1101():494-505. PubMed ID: 17344534 [TBL] [Abstract][Full Text] [Related]
35. A three-dimensional model for ciliary motion based on the internal 9+2 structure. Gueron S; Levit-Gurevich K Proc Biol Sci; 2001 Mar; 268(1467):599-607. PubMed ID: 11297177 [TBL] [Abstract][Full Text] [Related]
36. Effect of inhibition of axonemal dynein ATPases on the regulation of flagellar and ciliary waveforms in Leishmania parasites. Mukhopadhyay AG; Dey CS Mol Biochem Parasitol; 2018 Oct; 225():27-37. PubMed ID: 30145318 [TBL] [Abstract][Full Text] [Related]
37. Computation of the internal forces in cilia: application to ciliary motion, the effects of viscosity, and cilia interactions. Gueron S; Levit-Gurevich K Biophys J; 1998 Apr; 74(4):1658-76. PubMed ID: 9545031 [TBL] [Abstract][Full Text] [Related]
38. How are different ciliary beat patterns produced? Sleigh MA; Barlow DI Symp Soc Exp Biol; 1982; 35():139-57. PubMed ID: 6223395 [TBL] [Abstract][Full Text] [Related]
39. Heterogeneity of dynein structure implies coordinated suppression of dynein motor activity in the axoneme. Maheshwari A; Ishikawa T J Struct Biol; 2012 Aug; 179(2):235-41. PubMed ID: 22569523 [TBL] [Abstract][Full Text] [Related]
40. Calaxin establishes basal body orientation and coordinates movement of monocilia in sea urchin embryos. Mizuno K; Shiba K; Yaguchi J; Shibata D; Yaguchi S; Prulière G; Chenevert J; Inaba K Sci Rep; 2017 Sep; 7(1):10751. PubMed ID: 28883641 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]