BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 21479813)

  • 21. Irradiation of mammalian cultured cells with a collimated heavy-ion microbeam.
    Funayama T; Wada S; Kobayashi Y; Watanabe H
    Radiat Res; 2005 Feb; 163(2):241-6. PubMed ID: 15658901
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 'BioQuaRT' project: design of a novel in situ protocol for the simultaneous visualisation of chromosomal aberrations and micronuclei after irradiation at microbeam facilities.
    Patrono C; Monteiro Gil O; Giesen U; Langner F; Pinto M; Rabus H; Testa A
    Radiat Prot Dosimetry; 2015 Sep; 166(1-4):197-9. PubMed ID: 25877532
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Focus small to find big - the microbeam story.
    Wu J; Hei TK
    Int J Radiat Biol; 2018 Aug; 94(8):782-788. PubMed ID: 28795608
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Focusing giga-electronvolt heavy ions to micrometers at the Institute of Modern Physics.
    Sheng L; Du G; Guo J; Wu R; Song M; Yuan Y; Xiao G
    Rev Sci Instrum; 2013 May; 84(5):055113. PubMed ID: 23742595
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbeam studies of the sensitivity of structures within living cells.
    Braby LA
    Scanning Microsc; 1992 Mar; 6(1):167-74; discussion 174-5. PubMed ID: 1626238
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New challenges in radiobiology research with microbeams.
    Durante M; Friedl AA
    Radiat Environ Biophys; 2011 Aug; 50(3):335-8. PubMed ID: 21667289
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biological effects of heavy ions from the standpoint of target theory.
    Katz R
    Adv Space Res; 1986; 6(11):191-8. PubMed ID: 11537221
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Testing the stand-alone microbeam at Columbia University.
    Garty G; Ross GJ; Bigelow AW; Randers-Pehrson G; Brenner DJ
    Radiat Prot Dosimetry; 2006; 122(1-4):292-6. PubMed ID: 17189277
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic oxygen consumption measurement with a single-cell biosensor after particle microbeam irradiation.
    Xu Y; Zhang B; Messerli M; Randers-Pehrson G; Hei TK; Brenner DJ
    Radiat Environ Biophys; 2015 Mar; 54(1):137-144. PubMed ID: 25335641
    [TBL] [Abstract][Full Text] [Related]  

  • 30. System of cell irradiation with a defined number of heavy ions (III).
    Kobayashi Y; Funayama T; Wada S; Sakashita T
    Biol Sci Space; 2004 Nov; 18(3):186-7. PubMed ID: 15858384
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A charged-particle microbeam: I. Development of an experimental system for targeting cells individually with counted particles.
    Folkard M; Vojnovic B; Prise KM; Bowey AG; Locke RJ; Schettino G; Michael BD
    Int J Radiat Biol; 1997 Oct; 72(4):375-85. PubMed ID: 9343103
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Applications of amorphous track models in radiation biology.
    Cucinotta FA; Nikjoo H; Goodhead DT
    Radiat Environ Biophys; 1999 Jul; 38(2):81-92. PubMed ID: 10461753
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Method to Locally Irradiate Specific Organ in Model Organisms Using a Focused Heavy-Ion Microbeam.
    Funayama T; Suzuki M; Miyawaki N; Kashiwagi H
    Biology (Basel); 2023 Dec; 12(12):. PubMed ID: 38132350
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Performance and application of heavy ion nuclear microbeam facility at the Nuclear Physics Institute in Řež, Czech Republic.
    Romanenko O; Havranek V; Mackova A; Davidkova M; Cutroneo M; Ponomarev AG; Nagy G; Stammers J
    Rev Sci Instrum; 2019 Jan; 90(1):013701. PubMed ID: 30709223
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ion, X-ray, UV and Neutron Microbeam Systems for Cell Irradiation.
    Bigelow AW; Randers-Pehrson G; Garty G; Geard CR; Xu Y; Harken AD; Johnson GW; Brenner DJ
    AIP Conf Proc; 2010 Aug; 1336():351-355. PubMed ID: 23420504
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advances in microbeam technologies and applications to radiation biology.
    Barberet P; Seznec H
    Radiat Prot Dosimetry; 2015 Sep; 166(1-4):182-7. PubMed ID: 25911406
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A charged-particle microbeam: II. A single-particle micro-collimation and detection system.
    Folkard M; Vojnovic B; Hollis KJ; Bowey AG; Watts SJ; Schettino G; Prise KM; Michael BD
    Int J Radiat Biol; 1997 Oct; 72(4):387-95. PubMed ID: 9343104
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proof of principle of helium-beam radiography using silicon pixel detectors for energy deposition measurement, identification, and tracking of single ions.
    Gehrke T; Gallas R; Jäkel O; Martišíková M
    Med Phys; 2018 Feb; 45(2):817-829. PubMed ID: 29235123
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An irradiation facility with a horizontal beam for radiobiological studies.
    Czub J; Banas D; Braziewicz J; Choinski J; Jaskóla M; Korman A; Szeflinski Z; Wójcik A
    Radiat Prot Dosimetry; 2006; 122(1-4):207-9. PubMed ID: 17169947
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of a pixelated large format CMOS sensor for x-ray microbeam radiotherapy.
    Flynn S; Price T; Allport PP; Silvestre Patallo I; Thomas R; Subiel A; Bartzsch S; Treibel F; Ahmed M; Jacobs-Headspith J; Edwards T; Jones I; Cathie D; Guerrini N; Sedgwick I
    Med Phys; 2020 Mar; 47(3):1305-1316. PubMed ID: 31837272
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.