These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 21480019)

  • 1. A finite element model of stress-mediated vascular adaptation: application to abdominal aortic aneurysms.
    Zeinali-Davarani S; Sheidaei A; Baek S
    Comput Methods Biomech Biomed Engin; 2011 Sep; 14(9):803-17. PubMed ID: 21480019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Infrarenal aortic aneurysm. 1. Etiology and biomechanics].
    Paaske W
    Ugeskr Laeger; 1994 Oct; 156(44):6521-4. PubMed ID: 7825251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of abdominal aortic aneurysm growth with updating hemodynamic loads using a realistic geometry.
    Sheidaei A; Hunley SC; Zeinali-Davarani S; Raguin LG; Baek S
    Med Eng Phys; 2011 Jan; 33(1):80-8. PubMed ID: 20961796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of proteolytic treatment on plastic deformation of porcine aortic tissue.
    Kratzberg JA; Walker PJ; Rikkers E; Raghavan ML
    J Mech Behav Biomed Mater; 2009 Jan; 2(1):65-72. PubMed ID: 19627809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A thick-walled fluid-solid-growth model of abdominal aortic aneurysm evolution: application to a patient-specific geometry.
    Grytsan A; Watton PN; Holzapfel GA
    J Biomech Eng; 2015 Mar; 137(3):. PubMed ID: 25473877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A patient-specific computational model of fluid-structure interaction in abdominal aortic aneurysms.
    Wolters BJ; Rutten MC; Schurink GW; Kose U; de Hart J; van de Vosse FN
    Med Eng Phys; 2005 Dec; 27(10):871-83. PubMed ID: 16157501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of transmural heterogeneities on arterial adaptation: application to aneurysm formation.
    Schmid H; Watton PN; Maurer MM; Wimmer J; Winkler P; Wang YK; Röhrle O; Itskov M
    Biomech Model Mechanobiol; 2010 Jun; 9(3):295-315. PubMed ID: 19943177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrasac pressure changes and vascular remodeling after endovascular repair of abdominal aortic aneurysms: review and biomechanical model simulation.
    Kwon ST; Rectenwald JE; Baek S
    J Biomech Eng; 2011 Jan; 133(1):011011. PubMed ID: 21186901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow dynamics in anatomical models of abdominal aortic aneurysms: computational analysis of pulsatile flow.
    Finol EA; Amon CH
    Acta Cient Venez; 2003; 54(1):43-9. PubMed ID: 14515766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The morphology of elastin in non-specific and inflammatory abdominal aortic aneurysms. A comparative transmission, scanning and immunoelectronmicroscopy study.
    Cenacchi G; Guiducci G; Pasquinelli G; Gargiulo M; Degani A; Stella A; D'Addato M; Spina M; Martinelli GN
    J Submicrosc Cytol Pathol; 1995 Jan; 27(1):75-81. PubMed ID: 7697623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverse elastostatic stress analysis in pre-deformed biological structures: Demonstration using abdominal aortic aneurysms.
    Lu J; Zhou X; Raghavan ML
    J Biomech; 2007; 40(3):693-6. PubMed ID: 16542663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mathematical model for the growth of the abdominal aortic aneurysm.
    Watton PN; Hill NA; Heil M
    Biomech Model Mechanobiol; 2004 Nov; 3(2):98-113. PubMed ID: 15452732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The orthotropic viscoelastic behavior of aortic elastin.
    Zou Y; Zhang Y
    Biomech Model Mechanobiol; 2011 Oct; 10(5):613-25. PubMed ID: 20963623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling the influence of endothelial heterogeneity on the progression of arterial disease: application to abdominal aortic aneurysm evolution.
    Aparício P; Mandaltsi A; Boamah J; Chen H; Selimovic A; Bratby M; Uberoi R; Ventikos Y; Watton PN
    Int J Numer Method Biomed Eng; 2014 May; 30(5):563-86. PubMed ID: 24424963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling the growth and stabilization of cerebral aneurysms.
    Watton PN; Ventikos Y; Holzapfel GA
    Math Med Biol; 2009 Jun; 26(2):133-64. PubMed ID: 19234094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid-structure interaction.
    Scotti CM; Jimenez J; Muluk SC; Finol EA
    Comput Methods Biomech Biomed Engin; 2008 Jun; 11(3):301-22. PubMed ID: 18568827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patient-specific predictions of aneurysm growth and remodeling in the ascending thoracic aorta using the homogenized constrained mixture model.
    Mousavi SJ; Farzaneh S; Avril S
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1895-1913. PubMed ID: 31201620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Failure of elastin or collagen as possible critical connective tissue alterations underlying aneurysmal dilatation.
    Dobrin PB; Mrkvicka R
    Cardiovasc Surg; 1994 Aug; 2(4):484-8. PubMed ID: 7953454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Letter by Frydrychowicz and Markl regarding article, "Association between aneurysm shoulder stress and abdominal aortic aneurysm expansion: a longitudinal follow-up study".
    Frydrychowicz A; Markl M
    Circulation; 2011 Jun; 123(25):e643; author reply e644. PubMed ID: 21709068
    [No Abstract]   [Full Text] [Related]  

  • 20. Characterization of aneurysmal aortas by biochemical, thermal, and dielectric techniques.
    Samouillan V; Dandurand J; Lacabanne C; Stella A; Gargiulo M; Degani A; Gandaglia A; Spina M
    J Biomed Mater Res A; 2010 Nov; 95(2):611-9. PubMed ID: 20725971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.